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Galvanomagnetic phenomena in strong fields are studied for metals with open Fermi sur­
faces. Characteristic features of the angular dependences of galvanomagnetic parameters 
on the magnetic field direction are investigated and their relation to the topology of an open 
surface is determined. In particular, the possibility of resistivity saturation, previously 
established in principle1 for certain orientations of the magnetic field relative to the crystal 
axes, and its quadratic increase for other directions are analyzed in detail. It is found under 
what conditions the resistivity can increase linearly with the field as a result of averaging 
over the orientations of the crystallites in polycrystalline samples. 

THE theory of galvanomagnetic phenomena in met­
als, developed in reference 1 for an arbitrary dis­
persion law e: = e: (p) and an arbitrary collision 
integral, enable us to draw certain inferences re­
garding the topology of the Fermi surface from the 
experimentally determined galvanomagnetic char­
acteristics. When the Fermi surface is open or 
when it is located near open constant-energy sur­
faces, the asymptotic behavior of the conductivity 
tensor OJk in strong magnetic fields can differ 
essentially from its asymptotic behavior when the 
constant-energy surfaces are closed. Thus, for 
example, the asymptotic Hall coefficient for metals 
with an open Fermi surface can depend on the ori­
entation of the magnetic fields with respect to the 
crystallographic axes, whereas for closed surfaces 
the Hall coefficient in strong magnetic fields is iso­
tropic ( if the number of electrons does not equal 
the number of holes ) . 

An even more important distinguishing charac­
teristic of open surfaces is the fact that for some 
directions of the magnetic field the resistivity can 
approach saturation, while for other directions it 
can rise without limit ( p "" H2 ). 

In the present paper we investigate the galvano­
magnetic properties of metals with different types 
of open constant-energy surfaces and determine 
the characteristics of the angular dependences of 
these properties. 

1. GEOMETRY OF PLANE SECTIONS OF AN 
OPEN FERMI SURFACE 

For convenience we shall discuss only the con­
stant-energy surfaces which have the form of an 
"undulating cylinder" (Fig. 1) and the surface which 
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is represented by a three-dimensional grid of undu­
lating cylinders (Fig. 2). 

Such surfaces are of the most common type. The 
existence of the three-dimensional grid has been 
detected experimentally by Pippard2 for copper, 
while Verkin3 has found the undulating cylinder 
type for zinc. 

Further extension to arbitrary open constant­
energy surfaces is not difficult, because the sec­
tions of such surfaces by a plane Pz = const may 
contain momentum-space trajectories ( e: = const, 
pz = const) of all possible types - closed and open 
trajectories, with or without the periodicity of the 
reciprocal lattice. 

The direction of the magnetfc field will always 
be taken along the z axis. The set of magnetic 
field directions for which it is possible to have a 
band of open momentum-space trajectories is de­
termined by the structure of the constant-energy 
surface. In the case of the undulating-cylinder 
type, open trajectories are encountered only when 
the magnetic field is perpendicular to the cylinder 
axis. Open trajectories are encountered much 
more frequently in the case of the three-dimen­
sional grid. Figure 3 is a stereographic projection 
of the magnetic field directions for which open 
plane sections appear in the case of the three­
dimensional grid type of surface. There is a two­
dimensional set (solid angle) of magnetic field 
directions for which open trajectories are possi­
ble ( regions I in Fig. 3 ) . 

When the magnetic field direction coincides 
with one of the crystallographic axes open trajec­
tories are possible only for certain isolated values 
of Pz and do not contribute to the tensor aik· 
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FIG. 1. Section of an "undulating 
cylinder• type of constant-energy sur­
face by a plane pz = const. 

When the magnetic field is not along one of the 
crystallographic axes, we can have an entire band 
of open trajectories, integration along which con­
tributes to O"ik· A geometrical analysis shows 
that open trajectories appear, in particular, when 
the magnetic field direction is located in any prin­
cipal crystallographic plane. 

When the magnetic field direction is not located 
in any principal crystallographic plane, the condi­
tion for realization of a band of open trajectories 
(in the simplest case of constant-diameter tubes ) 
is 

b1 cos cp tan.& < d, b2 sin cp tan.&< d; (1) 

where d is the tube diameter, H, J., cp are the 
polar coordinates of the vector H in the coordi­
nate system where the polar axis coincides with 
the crystallographic axis that is closest to the 
magnetic field direction (axis 3 in Fig. 2 ) , and 
b1, b2 are the periods of the reciprocal lattice in 
directions 1 and 2. In the general case of tubes 
with nonuniform diameter condition (1) is not exact 
and the boundaries of regions I and II (in Fig. 3) 
are deformed. When only one of conditions (1) is 
fulfilled, the closed trajectories pass through sev­
eral cells of the reciprocal lattice (region III in 
Fig. 3 ). 

A simple analysis shows that for a given mag­
netic-field direction open trajectories in all cross 
sections Pz = const have a common direction, 
which is the intersection of the xy plane perpen­
dicular to the magnetic field with the nearest (in 
angle) principal crystallographic plane (open tra­
jectories qre always located in one of the principal 
crystallographic planes ( 1 0 0 ) , ( 0 1 0 ) or 

( 0 0 1 ) . This direction will hereinafter be the x 
axis. Thus the projections of all trajectories will 
be of finite length along the y axis (see Fig. 4). 
It must always be kept in mind that for a suitable 
choice of axes the magnetic field direction com­
pletely determines the entire coordinate system. 

2. ASYMPTOTIC BEHAVIOR OF GALVANOMAG­
NETIC CHARACTERISTICS IN STRONG FIELDS. 
TYPES OF SINGULAR MAGNETIC FIELD DI­
RECTIONS 

In describing the motion of an electron we shall, 
as in reference 1, use the quantities E and pz, 
which are conserved in a magnetic field, as well 
as the dimensionless quantity T = t/T0, which 
characterizes the position of the electron in the 
momentum-space trajectory E = const and in 
Pz = const. Here t, the time of motion along a 
given trajectory, is given by ( c/ eH) J dpx Ivy 
(see reference 1), and T0 agrees in order of 
magnitude with the time required for the momen­
tum projection ( Px or Py) of an electron moving 
along a momentum-space trajectory either tore­
turn to its original value (when the trajectory is 
located entirely within a single cell of the recip­
rocal lattice) or to change by a quantity of the 
order of the reciprocal lattice. The latter case 
is possible for an electron moving along an open 
trajectory or along a closed trajectory which 
passes through a few cells of the reciprocal lattice. 

To determine the conductivity tensor <Tik· it is 
necessary to solve a kinematic equation which, 
after linearization for a weak electric field E, 
is of the form 1 

FIG. 2 FIG. 3 

FIG. 2. Constant-energy surface of the "three-dimensional 
grid" type. 

FIG. 3. Stereographic projection of magnetic field directions. 
The shaded regions (I) give the field directions for which a band 
of open trajectories exists. Region II has no open trajectories. 
Region III, bounded by dashed lines, represents the field direc­
tions for which elongated closed trajectories exist (enclosing 
many cells). 
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t o<Ji. - • 
~_! + W {M = fo(c)Vt. Tu oT (2) 

where 1/Ji characterizes the addition to the equilib­
rium function fo of the electron distribution: 

f = fu-eluE·~; 
w { f} /t0 is the collision !_,ntegral, t0 is the mean 
free electron time, and I W I "' 1. 

The electrical conductivity tensor Olk is given 
by1 

(3) 

Strong magnetic fields are understood to be those 
which satisfy the condition 

"(o =To/ to= Ho} H ~ 1. (4) 

The characteristic field H0 is the field for which 
the characteristic time T 0 equals the mean free 
time t0• We shall hereinafter assume that condi­
tion (4) is always fulfilled. 

When all closed trajectories are located within 
a single cell of the reciprocal lattice and the open 
trajectories possess the periodicity of the recipro­
cal lattice, Eq. (2) can be solved by successive ap­
proximations (as in reference 1), with the follow­
ing representation of 1/Ji: 

~ 1,,(1) 
~i = .LJ "( O'fi · 

l=O 
(5) 

As will be seen below, the expansion (5) is notal­
ways permissible for open Fermi surfaces. Spe­
cifically, this can occur when the momentum-space 
trajectory extends over a few cells of the reciprocal 
lattice. This is associated with the fact that the 
characteristic time of electron motion in the mag­
netic field is the electron period of revolution along 
the trajectory (for a closed trajectory), which in 
the case of greatly extended closed trajectories 
that pass through a large number of reciprocal 
lattice cells can be comparable with or even much 
longer than the mean free time. Consequently, the 
character of the dependence of Olk on the magnetic 
field (that is, on Yo = H0 /H) varies. greatly with 
the magnetic field orientation and near certain sin­
gular directions the expansion in powers of Yo is 
not permissible. 

To simplify the following investigation, we illus­
trate the foregoing for the case W = 1 (that is, for 
the case in which collisions can be described by in­
troducing only the relaxation time t0). Equation 
(2) then becomes 

__!_ o<Ji; _j_ '''· = r (s) v .· 
Yo oT ' 'f, o ' (6) 

For closed trajectories, as in reference 1, we 

FIG. 4. Intersection of the plane Pz = const and the "three­
dimensional-grid" constant-energy surfaces E = E 0 (solid curves) 
and E = E0 + SE (dashed curves). Closed trajectories of type I 
correspond to energy regions E < E 0 ; trajectories of type II cor­
respond to energy regions E > E0 • Accordingly, opposite direc­
tions are taken along these trajectories. These two types of 
curves are separated by open trajectories. The direction of an 
open trajectory is given by the angle cp', for which cos cp' = 

cos cp(l + sin'cptan•t?t1n. 

use the Fourier method to obtain 

where y = T/t0, and T is the period of revolu­
tion of an electron in a closed trajectory: 

T = (cjeH) ~ dpx/Vy. (8) 

Near certain singular directions of the magnetic 
field ( small J in Fig. 1 and region III in Fig. 3 ) 
the trajectories are closed and greatly extended. 
To determine the basic angular dependence of aik 
near these directions the angular dependence of Y 
must be taken into account explicitly. In the case 
of an undulating cylinder with J « 1 we have T = 
aT0 /J, y = ay0 /J, a"' 1 for most trajectories 
and y "' y0 for the remaining trajectories. 

The contribution to ail from the "stretched" 
trajectories will be 

(9) 

where a, Ak, Bk also depend on the angles. Thus 
ail is a function of Yo and also of y0 /J. When 
J "' y0 « 1 it can be seen from (9) that the follow­
ing expansion is possible: 

ail= cra ("(o. "(o/.&) = L}'l'~"lz> (iof&), (10) 
n 

whereas the expansion given in (5) is impermissible. 
When W "'- 1 the character of the angular de­

pendence of aik in (7) and (10) does not change 
qualitatively. 
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We have no further interest in the smooth angu­
lar dependence of aik• which results from the spe­
cific form of the collision integral. We shall dis­
tinguish only the steep angular variation of Uik 
which is associated with the approach to the singu­
lar magnetic field directions. 

When a two-dimensional region (solid angle) 
of directions of H exists for which there is a band 
of open trajectories, an analysis of the methods and 
equations of reference 1 shows that within this re­
gion it is reasonable to use the expansion of 1/Ji in 
powers of Yo [expansion (5)] even when the open 
trajectories are aperiodic. The essential require­
ment for this purpose is that the mean velocities 
(v1 )b,.7 , during the mean free time on each portion 
of the trajectory (that is, in the interval b..T "' 1/y0 ) 

should, to a very high degree of probability, differ 
very little from the mean value v1 over the entire 
trajectory* (it must be noted, of course, that this 
condition is not fulfilled for greatly extended closed 
trajectories). 

By means of the given expansion we can see that 
in the most usual case when, for a given magnetic 
field direction, all open trajectories have a common 
direction (taken along the x axis) Eqs. (14), (21), 
(29) and (54) of reference 1 are valid and, specific­
ally, the resistivity increases quadratically with 
the field, p "' H2• The foregoing statement refers 
to all surfaces considered in the present paper, for 
which more details are given in the following sec­
tion. On the other hand, when open trajectories 
exist simultaneously for different directions (be­
longing to the same or to different surfaces if there 
are several of these) all components of Uik and 
Pik approach saturation. 

When the open trajectories have a common x 
direction, the asymptotic value of the transverse 
conductivity component ayx is of the order of 
Yo"' 1/H and, in virtue of Eqs. (21) and (23) of 
reference 1, can be written as 

a11x = - 2e2h-3T0 ~ if {cx<11(pz,E) -- e;T f~ (e) Pu} d'tdp.de, 
0 (11) 

where c~) is obtained from the condition 

(12) 

[see Eqs. (16) to (18) of reference 1]. 
The second term is independent of the collision 

integral and is determined only by the geometry of 
the surface. The first term disappears for closed 
trajectories in virtue of the condition g> ( opx/i:h) dT 

*This requirement follows from the fact that the expansion 
of tfri in powers of y0 contains expressions such as 
T 
f(vi- vi)dr and their iterations. 
0 

= 0. However, for open trajectories 
r 

1 r ap 
iiu ~Jim T j a: d't ~ bx/T0 =!= 0. 

0 

Consequently ayx together with the Hall coeffi­
cient l::lepends on the form of the collision integral 
and the magnetic field direction if the trajectories 
are not straight lines (in which case 1/J~) = 
1/J~)(~::, Pz) = 0). In this case the singularity in 
the angular dependence of the galvanomagnetic 
characteristics is the point where open trajec­
tories disappear. 

In accordance with the above, the special mag­
netic field directions can be of at least three types: 

(1) Magnetic field directions for which a band of 
open trajectories·exists form a one-dimensional 
set. This occurs, specifically, if there is an iso­
lated direction of open trajectories. Examples 
ar~ directions perpendicular to the axis for an 
undulating cylinder, and continuous curves con­
necting regions I in the sterographic projection 
of directions of H for a three-dimensional grid 
(Fig. 3). 

(2) There exists a two-dimensional region 
(solid angle) of magnetic field directions corre­
sponding to open trajectories. The singular direc­
tions of the magnetic field in this case are the 
boundaries of this region. An example is given 
by the boundaries of the shaded regions I in Fig. 3. 

(3) In the open trajectory region there exists 
an isolated magnetic field direction for which the 
band of open trajectories disappears. An example 
is given by the directions of the principal crystal­
lographic axes for a three-dimensional grid ( J. = 0 
and similar points in Fig. 3 ) . 

As has been shown above, in case (1) a strong 
angular dependence of ail appears in the closed 
trajectory region as the singular line of magnetic 
field directions is approached. 

In case (2) when the width of the open trajectory 
band vanishes on the boundary of region I, then, 
as will be shown, a strong angular dependence of 
Uil appears inside this boundary (that is, in the 
open trajectory region). The same occurs in case 
(3). 

A more detailed discussion with specific exam­
ples will be given in the next section. 

3. INVESTIGATION OF ASYMPTOTIC BEHAVIOR 
FOR SOME TYPES OF FERMI SURFACE 

a. Surface of the Undulating Cylinder Type 

When the magnetic field is not perpendicular to 
the axis of a constant-energy surface of the undu­
lating cylinder type, all trajectories E = const 
and pz = const are closed. 
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When the angle J. between the magnetic field ('~axx ('YJ) loaxu('Yl) "(oaxz (tl)) 
directions and the plane perpendicular to the cyl- an = "(oaux ('YJ) auu('YJ) au• ('YJ) 
inder axis is not small, the period TJ. of electron Toazx ('YJ) azu('Yl) a •• ('YJ) 

(16) 

revolution through its entire momentum-space tra­
jectory is much smaller than the characteristic 
mean free time t0: 

'Yo « 1. 
The conductivity tensor O"ik and the resistivity 

tensor Pik in strong magnetic fields have the same 
asymptotic form as in the case of closed constant­
energy surfaces (1): 

"(oGxy 
~~auu 
"(oazy 

"(oGxz) 
"(oGyz ; 

a,. 
(13) 

(14) 

For J. »'Yo the Hall coefficient is isotropic, 
independent of the form of collision integral, and 
inversely proportional to the volume between the 
cylinder surface and two adjacent crystallographic 
planes perpendicular to the cylinder axis. 

When J. ~ 'Yo « 1 the electron period of revo­
lution in the largest trajectory (Fig. 1) is com­
parable with t0 and O"ik contains terms, which 
cannot be expanded in powers of Yo since these 
terms contain 'Yo in the combination 'Yo I J.. 

We shall continue to take the z axis in the 
direction of the magnetic field, with the x axis 
in the plane of the magnetic field, and cylinder 
axis and the y axis perpendicular to this plane. 

Taking into account the angular dependence of 
the Fourier components of velocities vk in dif­
ferent trajectories, we obtain for ail, in accord­
ance with Sec. 2, 

(15) 

with similar expressions for the other components 
(a, Ak_, Bk are coefficients independent of 'Yo 
and J. in first approximation). The second terms 
in (15) are associated with the trajectories which 
remain closed even when J. = 0 (see Fig. 1). 

For small y 0, J. « 1 but arbitrary 'Yo I J. we 
can retain only the first nonvanishing terms in the 
expansion (10). A simple analysis then shows that 
the conductivity tensor can be represented asymp­
totically by the following general form: 

where TJ = y 0 IJ.. 
When J. « 'Yo (i.e., TJ - oo) aik ( TJ) tends to 

the finite values aik ( oo); this correspond to 
Eqs. (29) of reference 1. On the other hand, when 
J. » 'Yo the tensor aik ( TJ) has the form 

(
axx (0) axy (0) 

a;k = ayx(O) oc1 'Yj2 

azx (0) -oc2"1 

axz (0)) 
OC2'YJ ' 
a22 (0} 

(17) 

where a 1 and a 2 are constants. It is easily seen 
that in this case (16) reduces to (13). 

Expressions of the form 

a)y> + aW'l+aW "1)2 

an('YJ)= 1+~tl"'l' (18) 

furnish a good extrapolation of ail ( TJ) correspond­
ing to the structure of ail. Here 

In the special case of a right circular cylinder, 
E = ( p2 - p~ )I 2m0 ( Ps is the cylinder axis ) and 
W = 1, Eq. (18) is exact and 

axy ('Yl} =- ayx ('Yl) = axx ('Yl) = ao/(1 + 'Yj2); 

azz ('YJ) = ayy ('YJ) = a01J2/(l + 1j2); 

ayz = axz = - azu = - azx = Oo'YJ/(1 + 1j2); 
a0 = 2Vh-3 (e2tofmo)· 

It must be noted that the singular character of 
ail ( TJ) in the case of a right cylinder (specific­
ally, the fact that azz ( 0) = 0; axx ( oo) = axy ( oo) 
= 0) is associated with the absence of undulation; 
then Vz = 0 on each trajectory and there is no 
velocity component along the cylinder axis. 

For the resistivity tensor Pik we obtain 

where bik = (a -l >ik· 

"( -6 bxy ('YJ) 
byy ('YJ) 
bzy ("') 

When J. « y 0 ( TJ » 1 ) , bik ~ bik ( oo ) are finite 
quantities, which are generally different from zero. 
In the limit J. = 0 ( TJ = oo) Eq. (19) agrees with 
Eq. (54). of reference 1. 

When J. » 'Yo ( TJ - 0) the tensor bik ( TJ) be­
comes 

bxy (0) 
byy (0) 
bzy (0) 

(20) 
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and the expressions for Pik reduce to (14). In 
virtue of Pik (H) = Pki ( -H) we then have bxy ( TJ) 
= - byx ( TJ ) ; specifically, bxy ( 0 ) = - byx ( 0 ) = 
1/axy ( 0 ). 

Equations (16) to (20) remain valid even when 
the Fermi surface breaks up into an undulating cyl­
inder and an arbitrary number of closed regions. 
When additional open surfaces exist these equations 
remain valid for those magnetic field directions for 
which the sections of the additional surfaces are 
closed. 

Since in the expressions for Oik and Pik the 
coordinate axes were selected in a special manner, 
it is of interest to write the expression for the re­
sistivity with an arbitrary direction of the current 
(perpendicular to the magnetic field). This gives 

o = p cos2 ex+ p sin2 ex- (p + p ) sin ex cos ex • xx yy xy yx 

= 102b= ('rl) cos2 ex- i 01 (bxu (11) 

+ bux (11)) sin ex cos ex+ buu (11) sin2 oc, 
(21) 

where a is the angle between the current direc­
tion and the x axis. 

Taking into account the behavior of bik ( TJ) for 
TJ « 1 and TJ » 1, we represent bxx in the form 

~1'1)2 
bxx (11} = 1 + ).2'1)2 C (11}, 

and for p we obtain 

= ~1 cos2 ~ c( ) +A, 
p .f)2 + ).•y~ 11 (22) 

where A, f3t. A. are smooth functions of the angles 
and c ( TJ) is a smooth function of its argument TJ = 
y 0/J, with c ( 0) = c ( oo) = 1. 

Thus the basic dependence on angles and on the 
field as the singular line J = 0 is approached is 
given by (22), or explicitly 

~ 1H2 cos2 ex 
p = .a•H•+ ).•H~ c(11) +A. (23) 

Thus as the direction J = 0 is approached there 
appears a quadratic rise of resistivity with the 
field, whereas in all other directions saturation 
is obtained in the fields H ~ H0 /J. For a fixed 
field H there is a sharp maximum in the angular 
dependence of resistivity, the width of which is in­
versely proportional to the field: 

~&~To= Ho/ H. 

Since this maximum is very sharp in large fields, 
any averaging over the angles in the interval oJ 
» Yo (including J = 0) leads to a linear rise of 
resistivity with the field: 

-() - = xHcos2 cx +A· 
P II& 8.SH0 ' 

(24) 

In particular, when the resistivity is measured in 
a thin polycrystalline wire with diameter of the 
order of the crystallite size the averaged resistiv­
ity is observed: 

(25) 

(the bar over K and A denotes averaging over 
the smooth angular dependence in the equatorial 
plane J = 0). 

The linear law discovered by Kapitza4 is pos­
sibly associated with similar averaging. It must 
be emphasized again that because of the narrow­
ness of the maximum the method of averaging does 
not play an important part; specifically, averaging 
of the conductivity O"ik followed by a transforma­
tion to inverse quantities yields the same result. 

It must be noted that conclusions regarding the 
growth of resistivity near singular field directions 
[Eq. (23)] remain valid in the presence of few sur­
faces of the undulating cylinder type with differently 
directed axes ( in view of the fact that for each of 
the singular field directions open sections occur 
for only one of these surfaces, which thus deter­
mines the behavior of p and a). This can occur 
for cubic crystals, in which case the singular di­
rections lie in each of the three principal crystal­
lographic planes and the averaging again gives the 
linear law p ,..., H. 

The transverse component of the resistivity for 
an arbitrary current direction x' will be 

P = p cos2 ex- p sin2 ex + (p - p ) sin ex cos oc. y'x' yx xy xx yy 

Hence for the Hall coefficient with an arbitrary 
current direction we obtain 

Py'x'(H)-Py'x'(-H) byx('ll)+ byx(-'1)) R b( } 
R = · 2H = 2H0 = 0 "'i '(26) 

where R0, the Hall coefficient for J » y 0, is in­
dependent of the angles and the field: 

R0 =byx(O)/H0 = lfnec (27) 

( n is the number of electrons per cell ) and b ( TJ ) 
is a smooth function of TJ with 

b(O)= 1; b(oo)=byx(oo)jbyx(O). 

The characteristic angular dependence of the 
Hall coefficient on field direction for a fixed H 
(the rotation diagram ) is shown in Fig. 5. R = R0 

everywhere except for a narrow region near J = 0, 
the width of which decreases with the field: D.J"' 
y 0 = Ho /H. In this region the asymptotic behavior 
of the Hall coefficient depends on the specific form 
of the collision integral and cannot be expressed 
simply. 
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FIG. 5. Dependence of R 
on the angular coordinate iJ 
of H (rotation diagram) for the 
undulating-cylinder type of 
surface. 

b. "Three-dimensional Grid" Type of Surface 

It has already been indicated that this surface 
(Fig. 2) possesses all of the types of singularities 
enumerated in Sec. 2. Specifically, the portions 
of the equatorial lines which do not belong to re­
gions I in the stereographic projection of magnetic 
field directions (the heavy continuous lines in Fig. 
3) are singular lines equivalent to the directions 
J = 0 for surfaces of the undulating cylinder type. 
Region III surrounding this line contains strongly 
stretched closed trajectories; the entire analysis 
and all results of the preceding section can be 
applied to this region. The part of J is played 
by the angle between the magnetic field direction 
and the nearest principal crystallographic plane. 

Singular directions of another type are found in 
the boundaries of regions I and II (Fig. 3) as well 
as the principal crystallographic axes. Before in­
vestigating these it must be noted that region II 
contains only closed trajectories located within 
the limit of a single cell while region I contains 
open trajectories in addition. Therefore the stand­
ard asymptotic forms (13) apply to region II up to 
its boundary and the steep angular dependence oc­
curs only on the inner side of this boundary. 

The asymptotic behavior of the conductivity 
within region I can be most conveniently investi­
gated by considering separately the contribution 
to each component of the conductivity aik (Eq. (3)) 
from the band of open trajectories and from all 
other simple closed lines. It will be remembered 
that the contribution from simple closed trajector­
ies is given by (13). 

To determine the contribution from the band of 
open trajectories we first note that the magnetic 
field direction (inside region I) uniquely deter­
mines the single common direction of all open tra­
jectories (the intersection of the plane perpendicu­
lar to the magnetic field with the nearest crystallo­
graphic plane). By selecting this direction as the 
x axis we obtain a picture similar to the previously 

discussed case of an undulating cylinder with the 
magnetic field perpendicular to its axis ( J = 0). 
Therefore the corresponding contribution to Uik 
is given by (16), where, however, instead of aik ( 1)) 
there are constants which are generally proportional 
to the width of the band of open trajectories (when 
this is small). The width of the band of open tra­
jectories becomes zero on the boundary between 
the regions I and II and also in the directions of 
the principal crystallographic axes. Near these 
singular directions the width is generally propor­
tional to J', which is the absolute value of the 
angle between the magnetic field and the I-II boun­
dary (or the direction of the nearest crystallo­
graphic axis ) . 

Therefore near the singular directions, retain­
ing in Uik the principal terms in the small param­
eters Yo and J', we obtain 

('l~axx 

cr;k = 'loayx 

"t'oazx 

"t'oGxy 

"t'~auu + &'c2 

"t'oazy + &'ca 

"t'oaxz ) 
"t'oayz + &'ca ; 

azz 

(28) 

where aik· Ci are smooth functions of the angles 
and are generally quantities of the same order of 
magnitude. 

For the reciprocal tensor Pik we have with the 
same accuracy 

( bik are smooth functions of the angles with bxy = 
1/axy ). 

To determine the resistivity for an arbitrary 
current direction and a perpendicular field direc­
tion, the components of the tensor Pik must again 
be transformed as in the preceding section [Eq. (21)]. 
If a is the angle between the current direction and 
the x direction indicated above, the resistivity p 
is given by 

p = 'l;;-2&'b~x cos2 ~ + 1;;-1 cos oc sin oc (bux + bx11) 

Assuming that with accuracy to terms ~ y 0, 

bxy = - byx• we have for H » H0 (Yo« 1) 

(30) 

(A is a smooth function of the angles which is in­
dependent of H ) . 

Thus in regions I the resistivity grows quad­
ratically, disappearing at the boundaries and at 
the centers of the regions. In the current direc­
tion cos a = 0 (perpendicular to the direction of 
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FIG. 6. Angular depend­
ence of p near singular 
points of types I, II, and III. 

open trajectories) the resistivity also tends to 
saturation. 

It follows from Eqs. (22) and (30) that in very 
strong fields ( H » H0 ) the angular dependence 
of the resistivity near directions of the three sin­
gular types given at the end of the second section 
will have the form shown schematically in Fig. 6. 
A characteristic resistivity rosette containing all 
three types of singularities is obtained by rotating 
the field in a plane that passes through one of the 
crystallographic axes but does not lie too close to 
a crystallographic plane such as the ( 1 1 0) plane 
(Fig. 7). The experimental plotting of these an­
gular dependences in different planes enables us 
to determine the nature of the singular points and 
thus to "probe" the entire Fermi surface. 

We note that all the results obtained remain 
valid when a metal possesses an arbitrary number 
of closed Fermi surfaces in addition to one open 
surface. 

As was shown in reference 1, the asymptotic 
behavior of ayx together with that of the Hall co­
efficient R in the case of simple closed trajec­
tories is independent of the form of the collision 
integral and is associated only with the geometry 
of the Fermi surface. We are therefore able to 
calculate R in region II as well as close to singu­
lar points of the discussed type. 

By means of Eqs. (11) and (12) and by taking 
into account the invariance of the distribution func­
tion under transformations associated with the 
translational symmetry of the lattice, we obtain 
for field directions close to the crystallographic 
axes 

--~{v -d . b b [1- brcoscp +b. sin cp sin&]cos& 
Cyx- h3H mm l 2 dmln 

(31) 

where V is the total volume of the tubes in one 
cell, dmin is the minimum diameter of a tube in 
the direction of a crystallographic axis, J., cp are 

the angular coordinates of H (see Fig. 2), and 
u ( J., cp) depends on the specific form of the colli­
sion integral W, being given by the integral 

U (&, y) = - 2b1 ~ P11 (pz) dpz, 

taken only over open trajectories. The magnitude 
of Py(Pz) is determined from the condition (12): 

w {C~)} = w {t~ (e) e:To Py (Pz)} = w {~~(e) eHCTo -Py ("t")} . 

When J. = 0 the open trajectories disappear and 
u ( J., cp) = 0. For small J. we have u ( J., cp) '"" J.; 
for constant tube diameter u decreases more 
rapidly than J. and this term in (31) can be neg­
lected. 

We can therefore make the following statements 
regarding the asymptotic behavior of the Hall co­
efficient. R = (Py'x'(H)- Py'x'(-H))/2H is inde­
pendent of H but is a function of the angles and 
the form of the collision integral in regions I and 
III (Fig. 3). In region II 

R = 1 I nee, (32) 

where n = 2Vh -a is the number of electrons. When 
the magnetic field is directed along a crystallo­
graphic axis the asymptotic Hall coefficient is also 
determined only by the topology of the Fermi sur­
face and is independent of the form of collision in­
tegral. R can be written formally, by analogy with 
(32): 

R = 1 I n;ec; i = 1, 2, 3, (33) 

where the numbers ni do not equal the number of 
electrons n and are given by 

n1 = 11- 2h-3d 1b2b3 ; /12 = n- 2h-3d2b1b3 ; 

n3 = n- 2h-3d3brb2; 
(34) 

dto d2, d3 are here the minimum diameters of the 
tubes in the directions of the crystallographic axes 
1, 2, 3. 

An interesting fact must be noted. As shown in 
reference 1, the concepts of "electrons" and "holes" 
can be introduced only for closed surfaces. In the 
case of closed trajectories on open surfaces we 

FIG. 7. Rotation diagram 
(p = p(d)) with three types of 
singular points. 
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can also speak in some sense of two types of mo­
tion depending on the direction in which a trajectory 
is traversed (for closed surfaces this direction 
differs for "electrons" and "holes"). On an open 
surface, however, the direction at a single point 
may depend on the magnetic field direction (that 
is, on the direction of the intersecting plane). 
This occurs in the case of the "three-dimensional 
grid" (Fig. 4). Therefore the "number of carriers" 
of types I and II depends on the magnetic field di­
rection and is not invariant. 

From this point of view the quantities n1 in 
(33) can be interpreted formally as differences 
between the numbers of such carriers, in the form 
ni = nf - np, although we naturally cannot speak 
of any division into "holes" and "electrons". 

The authors are indebted to M. I. Kaganov for 
valuable discussions. 

Note added in proof (October 7, 1958). An an­
gular dependence of the resistivity which becomes 
linear as the result of averaging, has been deter­
mined experimentally very recently by Alekseev­
skii and Gaidukov (J. Exptl. Theoret. Phys. (U.S.S.R.) 
35, 554 (1958), Soviet Phys. JETP 8, 383 (1959)]. 
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