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The correlation between the polarization of conversion electrons and the direction of electron 
emission in the preceding {3 decay is treated. The entire calculation is done taking account 
of the electric field of the nucleus. Conversion can occur in any atomic shell. In particular, 
the nuclear electric field has a significant effect in K conversion. It causes the appearance 
of an appreciable transverse component of the polarization in magnetic transitions, and sig
nificantly increases the magnitude of the polarization for electric transitions. 

BECAUSE of non-conservation of parity in {3 de- emerging electron, ~ is the polarization of the 
cay, the residual nucleus will be polarized in the electron; gK2 ( r) and fK2 ( r) are the radial parts 
direction of emission of the electron. The {3 -de- of the Coulomb functions, normalized to a o -func-
caying nucleus is assumed to be unpolarized and tion in the energy scale; the phase oK 2 approaches 
the direction of emission of the neutrino is notre- - 1r ( Z2 -1 )/2 as z- 0. 
corded. Thus if the {3 decay is followed by inter- The matrix element for the conversion process 
nal conversion, the conversion electrons should can be written in the following form: 3 

have a definite polarization. This phenomenon, for 
the case of K conversion and omitting effects of 
the nuclear electric field, was treated by Berestet
skii and Rudik.1 The electric field of the nucleus 
has a marked effect on the internal conversion 
process and causes a large change in the conver
sion coefficient. The nuclear electric field should 
therefore also have a marked effect on the polari
zation of the conversion electrons. 

We write the initial wave function of the electron 
which undergoes conversion in the form: 

·" = (ig", (r) n~:~. (r 1 r)) 
'!'1 (/',) , 

f "' (r) . .Q j,M, (r I r), (1) 

where QJ~ ( n) is a spinor surface harmonic hav
ing components 

[.Q}~ (n)]p. = Ci(!!L; l, M-!LY 1, M-IL (n), 

[' = 2j -f, X=(/-!') (j + lj2), 

in which C~~; b{3 are Clebsch-Gordan coefficients 
and Y lm is a spherical harmonic. Throughout the 
paper, we use the system of units in which 1i = c = 1. 

The wave function of the emitted electron is a 
solution of the Dirac equation which, at infinity, is 
a superposition of plane and outgoing spherical 
waves. This function was found in reference 2, 
and we shall write it in the form (2) 

_ (21t>''• ...,, u,> • (ig", (r) n):~. (r I r)) . 
1}12- v- ..:..J [.Qj,M,(n)j~ , exp{-10"2 }, 

P2&2j,f,M, fx,(r) .Q~ 1 ,> (rlr) ,,M, 

~)l,,,"'•= ~ (/tmtiQJ~f/2m~)*(B)~b; (3) 
M 

(!o.) • • ().) 
(BiMht = ) lji2Bi1l1ljlt dv. (3a) 

Here ( l1m1 I QJ~ I 12m 2 ) is the nuclear matrix ele
ment for the transition, I1m 1 are the spin and spin 
projection of the nucleus before conversion, 12m2 
the spin and spin projection of the nucleus after the 
conversion, I is the nuclear spin before the {3 -de-

(A.) 
cay, BjM is the operator of the interaction of the 

electron with the field of the multipole. This oper
ator has the following form: 

B)~= Gi(wr)a.YiiM(r /r), 

BJ~= Yi~ 1 Gi(wr)YiM(rlr) 
, I 2i + 1 + V i + 1 Gi+t(wr) ~y i. 1-1, M (r / r). 

(4) 

A. = 0 for magnetic transitions and A. = 1 for elec
tric transitions. In addition, a = ( ~ ~), where the 
a's are the Pauli matrices; w is the energy of the 
transition; 

a j{x) = (21t)'10 H~~·1 ,(x) 1 Vx 
( H(1) is a Hankel function); YjZM is a vector 
spherical harmonic with contravariant components 
equal to 

where n is a unit vector in the direction of the The properties of vector spherical harmonics were 
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studied in Ref. 3. 
The density matrix with respect to the spin states 

of the conversion electron has the form 

P , (/ 1/111 I Q,<!;4 II 2m2)* 
11lt11l ' ' 

' I 

mt, m1 ,m2 
M,M' 

(5) 

The expression for the matrix Pm1m1 which char
acterizes the state of polarization of the nucleus 
after (3 -decay was found in reference 1: 

where vll are the spherical components of the 
velocity vector of the (3 particle: 

v<o) = V2 , v±1 = + ~ (vx+ivu)!V2; 

(6) 

and a is a constant which determines the angular 
distribution of (3 particles in the decay of polar
ized nuclei with spin 11 and average value <I1z> 
for the spin projection, which make a transition to 
a state with spin I. 

For allowed transitions, and for the S, T, A 
and V interactions, the value of a is:4 

IX= [c1 + (Ze2 jsv)c2] /(1 + bjz), 

c1~ = 2 Re {<ere; - eAe~) I MoT 12 t-.M 

+ V 11 ~ 1 (ere;+ e~e~- eAe~- e~e~) MrM~T}; 

c2: = 2 Im {(ere::+ e~e~) I MGT 12 AJ,[ 

+ V 11 ~ 1 (ere~+ e~e~-- eAe~·- e~C~) MFM~T}; 

h~ = 2 V1- (Ze2) 2 Re {(ere~+ C~C~) I MoT 12 

+ (ese~ + e~e~) i MF /2}; 

c = ([ er 12 + i e~ 12 +I eA 12 + I e~ 12 ) I MoT 12 

+(I Cs )2 +I e~ !2 +I Cv !2 +I c~ [2 ) I Mr 12 ; 

11/(1+1) if 11=1 

"-1,1 = 1 '' / 1 = I + 1 

-(/--1)/1 " 11=1-1. 

The matrix element of the multipole moment can 
be expressed as 

(7) 

The general expression for the polarization vector 
<a-> of the conversion electron must have the fol
lowing form: 

<a>= a (v·n) n + b {v -- (v·n) n}, 
(8) 

where a and b are constants. 

We note that the matrix pm1m~ can be written 
as in Eq. (6) and the polarization expressed in the 
form (8) only for allowed transitions and for first 
forbidden Coulomb transitions. 

MAGNETIC TRANSITIONS 

Substituting in (3a) the electron wave functions 
l{J1 and l{J2 from (1) and (2) and the operator Bj~. 
we get 

We have introduced the following notation for the 
radial integrals: 

R1x, = ~ f,_, (r)gx, (r) Gi (rur)r2 dr, 

R2x, = ~gx, (r) fx, (r) Gi (<ur) r2 dr. 

We shall use the system of mutually orthogonal 
vector spherical harmonics 

Y)% = yjjM. 

(10) 

y(l) - ,. /-i- y .. /J+T y (1 ) 
jAJ- Jl 2j + 1 j, i+I. M + Jl 2j -j- 1 i; i-I, M• 1 

Y)Ai1) = nYiM· 

YJ~ and YJ11 are transverse vectors, so that 

Y (o) ( ) _ y(1) _ jM n • n - jM ( n) · n - 0. They are related to 

one another by 

iY)~ = [n x Y)%J. (12) 

The following useful formula holds for YJ~ : 
Y)%=LYj.t~/Vj(j+1) (L=-i[rxV'l). (13) 

In calculating the angular integrals in (9), we 
make use of formula (13), the self-adjoint charac
ter of the operator a-· L, and the formulas: 

a• L.Q)~ = {j (j + 1) -/ (l + 1)- {} .Q)~; (14) 

a.n.Q)~ (n) = .Q)~ (n); (15) 

Yz,m, (n) Yz,m, (n) (16) 

~ v(2/t + 1) (212 + 1) Lo LM 
..W 47t (2L + 1) -ez,o; z,oez,m,; z,m,Y LM (n). 
LM 

In carrying out the summation in (9) we use Racah's 
formula (cf., for example, reference 5): 

"Q ee, o:+~ ecy e'· y-o: LJ ao:; b~ c, o:+~; d, ·r- a.--~ b~; d, y-o:-~ 

~ (17) 
= (2e+ 1)'1'(2f + 1)'i• e~~;f,y-o:W(abcd; ef) 
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in which W (abed; ef) are Racah coefficients. 
After performing the integration and summation 
in (9), we get 

(B}~b = ~ ax,W U2M~h; 1/d) 
j,I,M, 

Cl,o Cj,,\1, Cj,M, y ( ) 
X .0 1• jM; itM1 12 , Mo-~; 'I• ~ !,, M,-~ 0 : 

I ' 10 
(18) 

_ . VI 2 (2j + 1) (21~ + 1) (2it + 1) ;a,., 
a,.,-- 'Itt . (" , i) e (R1x. + R2,.,). 

]]T P2~2 -

Substituting from (6), (7) and (18) into formula (5), 
dropping irrelevant common factors, and summing 
over all values of M, M', M1o M2, M3, p., we 
find for the density matrix: 

where 

A = ~ I ax, /2 (2j2 + 1) (C:~~ 1 ~0 )2 W2 U2M1h; 1/2 j), 
izla 

X ~ (- 1 )/.-i,-1QE,.,QE:, 
i2 12. j3 
l,-1, 

>< V(2/2 + 1) (2/a + 1 )(2j2 + 1 )(2ia + 1 )C/1 0'~ l·oC 1~~ !' 0 c~?o; l,o 
I 1 J I 1 

X W (l2M~i1; 1/2 j) W (laial~h; 1/2 j) 

We choose the z axis to be along the direction 
of the velocity of the {3 particle. Then formula 
(19) can be rewritten as 

Prf: = (21) 

( A+ A1 - A2 (3cos2 fJ- 1), - 3A2 sin 6cos 6 ) 
-3A2 sin&cos6, A-A1 +Ad3cos2 0-1)' 

where e is the angle between the directions of 
emergence of the {3 particle and the conversion 
electron. Knowing the density matrix P~e. it is 
easy to find the polarization of the conversion 
electrons: 

(o) =SpPo/SpP; 

(o)=a(v·n)n+b{v-(v·n)n}, 

a=(A 1 --2A2)/vA, b=(A1 +A2)/vA. 

(22) 

(23) 

For the K shell ( l1 = 0; h = t K1 = -1 ), using 
formulas (23) and (20) and inserting the values of 
the Clebsch-Gordan and Racah coefficients, we 
find 

< o> = rx i (j + 1) +I, (I 1 + 1)- I 2 (12 + 1) 
2 j (j + l ) [ 2 ( l + i"IJ~ !2 ) 

"'lk") = 

(24) 

V'TU+T) {Rl. -i + R2, -i- (Rt, l+t + R2, i+l) exp (i (Ill+ I -Il-l))} 

(j + 1) (R 1, -I+ R2, _ 1) -1- j (R1 , i+ 1 + R2• i+l) exp (i (lli+1 -11_1)) 

Let us consider two limiting cases. 
(1) Small Z. In this case the electric field of 

the nucleus can be neglected. Then the radial in
tegrals are calculated explicitly and, using (24), 
we get the same value of the polarization as was 
given in reference 1. 

(2) Large Z and low energy of the conversion 
electron, so that p2 /mZe2 « 1. In this case, 
I Rt, j+t + R2, j+tl « I Rt, -j + R2, -j I. and we find 
for the polarization the expression 

< >- j(j-f-1)+it(I1 +1)-I,(I.+1) 
0 - rx 2j (2i + 1) /1 

x {(v·n) n + j(v- (v• n) n)}. 
(25) 

We note that the formulas (24) are valid for any 
shell, so long as Kt = -1 for the electrons in the 
shell. In particular they are applicable to conver
sion in the L I shell. We also give the formulas 
for conversion in the L II shell (or in any shell 
with K1 = 1; h = !; l1 = 1 ): 

'o)=rx i(i+1)+It(/t+1)-I.(J.+l) 
\ 2i(i+1)/2(1+11Jt0 \ 1 !2) 

(26) 

'Y1~\ I = l'1 j (j + 1) 

ELECTRIC TRANSITIONS 

Substituting the electron wave functions ljJ1 and 
ljJ2 from (1) and (2) and the operator B~~ into 
(3a), we get J 

(I) (21t)'1• "' rn(l,) ( )l { ·0 , .111-1-. 
(BJMb= ,,- ~ f,M, n ~exp t "•' H' i+1 

r PtE2 hlaM2 
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We have introduced the following notation for the 
radial integrals: 

R3, "' = ~ G1 (wr) g", (r) g", (r) r2 dr, 

R4, "' = ~ Gi (wr) fx, (r) fx, (r) r2 dr, 

Rs, "• =- i ~ G/-1 (<or) fx, (r) g><, (r) r2 dr, 
(28) 

Rij,x,= - i ~ Gi_I(wr) g", (r)f "• (r) r2 dr. 

Now let us calculate the angular integrals. For 
the first pair of integrals over angle, we get: 

1 
= V41t V(2j + 1) (2ir + 1) (2l1 + 1) (29) 

X C l,o cJ,M, W ( '[ · J 1 [ · 
z,o; Jo J,M,; iM I 1l2 12; 2h!· 

To calculate the second pair of integrals over angle, 
we write 

. ~-i- y(-1) v' i + 1 y(1\ 
y j, i-1,M = v 2j + 1 jM + 2j + 1 jM· (30) 

Using formula (13) and the commutation relations 
for the Pauli matrices, we find: 

a·Y· · a- = --Y· a•LY· ( r) y-i 1 
( J.J-l,M) r 2j+1 JM+Yj(2j+1) JM• 

(31) 

( r) -v-j 1 a- a·Y· · = --Y· - a·LY· r ( J,J-1,M) 2;'+1 JM Yj(2;'-t-1) JM· 

Using formulas (31), (14), (15), and (16) along with 
the fact that the operator (]'• L is self-adjoint, we 
find for the second pair of angle integrals: 

\' (""\(I~)· y r.(l,) d 
~ "'"J,M, 0' • j, j-1, M"'"J,M, 0 

= v ~ v j (2ir + 1) (211 + 1) ( 1 + )(2 j l<t) 

X cl;g; JoCk~:; iM W (jl1j2 1h; l2j1); 

I r.(l,)• u' \ J "'"i2M,a • Y i. i-1, M.Qj,M, do 

X Cl,o Cj,M, W ( '[ . 1 I [ . ) 
l,o; io j,M,;iM I Il2 12; 2!1 · 

(32) 

Substituting the results of the angular integrations 
in (27) and using the symmetry properties of the 
Clebsch-Gordan and Racah coefficients, we find an 

expression for ( Bj~ )21 which differs from (18) 

only in the replacement of Zi by l1 and of aK2 by 

b = ,.. • I 2i (2i + 1) (2ii + 1) (2tt + 1) [R + R "' v (j + 1) p €· 3, "' 4, "' 
2 2 (33) 

(1 x, -x1) R (I x, -x1 \ R ] ., - + ·-i- s, "• + - -j~) 6 , "' exp {Lox,}. 

We can therefore immediately write the formula 
for the polarization of conversion electrons in an 
electric transition: 

(a)= a (v • n) n + b {v- (v• n) n}; 
(34) 

a= (Bl. -2B1) /vB, b = (B1 + 8 2)/vB, 

where the quantities B, Bit and B2 are gotten 
from A, Alt and A2 by making the substitution 
described above. 

For the polarization of conversion electrons 
ejected from the K -shell, we get the expression 

(a)=ot i(i+1)+lt(lt+1)-lt{J,+t) 

2j (j i- 1) It (1 +I TJ}.0 12) 

X {(v•n) n +Vi U+ 1) Re 1lk1l(v-(v•n) ~l; 

11l,tl = - 1 (J + 1) (Ra, -/-1 + R4. -/-1 + 2Rs, -/-1) + 
V i<i+ 1) (Ra, -i-1 + R4, -1-1 + 2Rs, -1-1) 

(35) 

In the free electron approximation, the radial 
integrals can be calculated explicitly: 

R _ (2 z 2 )'l• v2 (e, + m) I ·i. 
3, x. - 7t e m "' 11 , 

R4,x1 = Rs,x1 = 0; 

R (2 Z 2 )'loo/2(e,-m)/ ·f. ~ a,J =- 7t em V "' 1_ 1 t , o1-u_1_ 1 = 0. 

Substituting these values for the radial integrals 
into (36), we get 

(37) 

after which we find from (35) the same value for 
the polarization as in Ref. 1. 

For high Z the radial integrals cannot be found 
explicitly, and must be computed numerically. We 
give, for Z = 80, a table of the values of -./ j ( j + 1) 
x 11~>, calculated using values of the radial integrals 
wh1ch were kindly communicated to us by L. A. Sliv. 

As we see from a comparison of the table with 
formula (37), the electric field of the nucleus also 
has a significant effect on the polarization of the 

'>zl 0.3 1 0.5 1 0.7 1 
1 4.6 3,3 2.5 2.0 
2 3.7 2.5 2.0 1.4 
3 3,2 2.2 1.6 1.04-0.27i 
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conversion electrons in the case of electric transi
tions. Formulas (35) and (36) are applicable to con
version in any shell with K2 = - 1. In particular 
they are applicable to conversion in the L I shell, 
except that the radial integrals will be different. 
For conversion in the L II shell (or any shell 
with K1 = 1 ), we find for the polarization of the 
conversion electrons 

(a)= oc i (j + 1) + T, (f, + 1)- T, (T. + 1) 

2j(j + 1) I, (t +I "lli_l/1 1") 

X {(v • n) n + ViU + 1) Re 't)LJI (v- (v ·n) n)}; 

't)LII = V j (j +1) 

(38) 

In conclusion I express my sincere thanks to 
Profs. V. B. Berestetskii and A. P. Rudik for pro-

posing the problem and for advice, to Academician 
A. I. Alikhanov and V. A. Liubimov for interest in 
the work and for discussion, and to Prof. L. A. 
Sliv who provided the values of the radial integrals. 
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