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A simple geometrical method is presented for the construction of waves (reflected and re­
fracted) diverging from a surf\J.Ce of discontinuity and produced by the incidence of a plane 
monochromatic wave on a plane stationary surface of discontinuity in a medium describable 
by the equations of magnetohydrodynamics. The case of a shock wave is considered. 

On the basis of the results obtained, the stability of shock waves with respect to splitting 
up is investigated as regards obliquely incident disturbances. The change in frequency re­
sulting from the interaction of small disturbances with shock waves is considered. 

1. INTRODUCTION 

%THIN a stationary homogeneous flow of a fluid 
of infinite conductivity situated in a magnetic field, 
there exist several types of small disturbances with 
different dispersion laws w = w ( k ): magnetohydro­
dynamic, magnetoacoustic (slow and fast), and en­
tropy waves. In the presence of discontinuities, 
these disturbances can be transformed one into 
another; when some one disturbance (of frequency 
w and propagation vector k) falls on a discontinu­
ity, the waves (reflected and refracted) diverging 
from the discontinuity will contain, generally speak­
ing, disturbances of all types. 

as well. Of considerable interest is the fact that 
within a definite angular interval the components 
of the phase and of the group velocities along the 
normal to the discontinuity have opposite signs, 
and to obtain the correct solution of the problem 
of stability we must therefore perform the division 
into incident and divergent waves by considering 
not their phase velocities but their group velocities. 

In ordinary hydrodynamics the interaction of 
sound with shock waves has been investigated (for 
the case of an ideal gas) by Blokhintsev, 2 Burgers, 2 

and Brillouin, 3 and (in the case of an arbitrary non­
viscous fluid) by the author. 4* 

Because of the relatively complicated dispersion 2. SMALL DISTURBANCES 

We denote by oA the amplitudes of disturb­
ances proportional to exp i ( k · r - w0t) in the 
coordinate system in which the fluid is at rest. 

law in the case of magnetoacoustic waves, the ana­
lytic solution for the propagation vectors (phase 
velocities) of the divergent waves (the laws of re­
flection and refraction) becomes inconvenient, 
since the solution involves roots of a fourth-degree 
equation. Nevertheless, the problem admits of a *In D'iakov's articles 5 the interactions between stationary 
simple geometric solution with respect to which discontinuities of low intensity, and also between stationary 
the laws of reflection and refraction can be formu- weak discontinuities and shock waves, have been studied 
lated. The calculation of the amplitudes of the di- within the framework of ordinary hydrodynamics. We note that 

owing to the absence of dispersion, the laws of reflection and 
vergent waves in terms of the amplitude of the in- refraction, and also the amplitudes of the divergent discontin-
cident disturbance is not given in the present article. uities, agree with the corresponding quantities for plane mono-

Recently Akhiezer, Liubarskii, and Polovin 1 have chromatic waves. In magnetohydrodynamics, since the phase 
investigated the stability of shock waves with respect velocity depends only on the direction k/k and not on the fre­
to splitting, under disturbances that depend only on quency w, the results of the present investigation must also be 
the distance to the shock wave and on the time (in applicable to discontinuities interacting with shock waves. 
our treatment this corresponds to normal incidence Naturally, it is not possible to derive from this the shape of 

f th d" t b th di t• •ty) the perturbed shock wave, nor the results with respect to weak 
0 e lS ur ance on e scon lnUl · discontinuities (discontinuities of the derivatives). On the 

The problem considered here allows us to in- other hand, an investigation of monochromatic waves enables 
vestigate the stability of shock waves with respect us t 0 determine such quantities as frequency shifts produced 
to splitting under obliquely-incident disturbances b~ reflection or refraction at a discontinuity (cf. Sec. 7). 
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These disturbances are therefore proportional to 
exp i ( k · r - wt) in the system in which the sur­
face of the unperturbed discontinuity is at rest. 
We state here only those characteristics of small 
disturbances6• 7 needed for subsequent discussion, 
i.e., the dispersion laws w0 ( k). 

Entropy wave. Just as in the case of hydrody­
namics, the disturbance in the entropy oa and the 
disturbance in the density op associated with it 
are at rest with respect to the fluid. All the other 
quantities are undisturbed: 

w0 (k) = 0. (2.1) 

Magnetohydrodynamic waves or Alfven waves. 
The thermodynamic quantities are undisturbed. 
The velocity and the related magnetic field both 
oscillate: 

w0 (k)=+k•u, u=H/V47tp. (2.2) 

Magnetoacoustic waves. This is an adiabatic 
motion ( oa = 0) in which the pressure and the 
velocity, density, and magnetic field associated 
with it all oscillate: 

s 2 = ( op/op )a is the square of the velocity of sound. 
In the system of coordinates in which the discon­

tinuity is at rest while the fluid moves with the ve­
locity v, the frequency w of the disturbance has 
the form 

w0 =w-k·v. (2.4) 

By introducing the phase velocity of the disturb­
ance with respect to the fluid at rest, which de­
pends in our case only on the direction of propaga­
tion, 

V(x) = woik) x, (2.5) 

we can write the relation between the frequency 
and the propagation vector in the form 

w-k•v=+kV(x), (2.6) 

where we take V to denote the absolute value of 
the phase velocity. For the Alfven waves we have 

v A = u 1 cos a I· (2.7) 

Magnetoacoustic waves can be separated into 
two branches (fast and slow waves): 

V ± = { [s2 +u2 + V(s2 + u2) 2 -4s2u2 cos2 6]. (2.8) 

The plus sign corresponds to the fast waves which 
go over into ordinary sound when the magnetic field 

H --... 
FIG. 1. The surfaces 

V(x.) and the interaction of 
these surfaces with the 
plane of incidence. 

is removed, the minus sign corresponds to the sec­
ond branch, the slow sound, which together with the 
Alfven waves degenerates, in going over to ordinary 
hydrodynamics, into a disturbance of the curl of the 
velocity (rotational wave) which is at rest with re­
spect to the motionless fluid. In a moving fluid all 
the disturbances considered above are, in addition, 
carried along by the stream. 

We shall make use hereinafter of velocity vector 
diagrams which specify VA, V +• V _, in accord­
ance with (2.7) and (2.8), as functions of the direc­
tion K. 7 The speed of propagation of a disturbance 
of a given type is determined by the length of the 
vector drawn from the origin in the direction k 
to its intersection with the corresponding surface 
V(K) (Fig. 1). V(K) represent surfaces of revo­
lution with respect to the direction of the magnetic 
field H and possess central symmetry with re­
spect to the origin. 

3. BOUNDARY CONDITIONS AT THE SURFACE 
OF DISCONTINUITY 

At the surface of discontinuity in the coordinate 
system I, in which the surface of discontinuity is at 
rest, the system of boundary conditions which fol­
lows from the continuity of the fluxes of mass pv, 
of energy g, of momentum 7l"ik• of the tangential 
components of the electric field - [ v x H ]/ c, and 
of the normal component of the magnetic field6• 7 

has the form 

{pVn} = 0, {gn} = 0, {1ttn} = 0, 

{[vxH]t} = 0, {H n} = 0. 
(3.1) 

Here n and t denote components normal or tan­
gential to the discontinuity. {A} denotes the abrupt 
change in the value of the quantity A at the discon­
tinuity. In the coordinate system I we shall choose 
the x axis to be directed along the normal to the 
discontinuity in the direction of flow (for shock 
waves). The quantities belonging to the semi -in­
finite space IT, for which x < 0 (ahead of the 
shock wave), will be denoted by A to distinguish 
them from the quantities A belonging to the semi-
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infinite space IT (behind the shock wave); 
{A} =A- A. 

When a small disturbance falls on the disconti­
nuity it is necessary, in the approximation linear 
in terms of the amplitude of the incident disturb­
ance oA (i) (or oA (i) ) , to take into account the 
deformation and the additional velocity of the sur­
face of discontinuity. In this approximation the 
boundary conditions for the disturbance can be 
written8 with reference to the unperturbed surface 
of discontinuity at x = 0 (cf. the cases of ordinary 
hydrodynamics9 and relativistic hydrodynamics10 ). 

For disturbances of the type ,..., exp i ( k · r - wt) 
we must guarantee the "continuity" at the surface 
of discontinuity ( x = 0) of the frequency w and 
of the component q of the propagation vectors 
k(i) and k(d), i.e., the divergent waves will have 
the same frequency and component of the propaga­
tion vector as the incident wave. We note that this 
is not associated with the specific form of the boun­
dary conditions (3.1), but only with the smallness 
of the disturbance, which allows us to reduce the 
perturbed boundary condition to the plane x = 0 .U 
As a consequence of linearity, the equation of the 
disturbed discontinuity has the form 

x = 'Y) exp i ( q • r - wt) (3.2) 

and is characterized by the amplitude 1J. By ex­
panding the incident and the divergent disturbances 
in terms of eigenwaves, we obtain from (3.1) a sys­
tem of equations for the amplitudes of the divergent 
waves oA(d) and of the amplitude of the disturb­
ance of the discontinuity 1J. When oA,..., exp i ( k · r 
- wt), the last perturbed equation in (3.1) is a con­
sequence of the two preceding ones. Finally we ob­
tain a system of seven inhomogeneous equations en­
abling us to find oA (d) and 1J in terms of given 
values of oA (i): 

"'T A<dl "'r ·A-<d\ T "'U •A<il "' -cil LJ iko k + LJ au 1+ ;'YJ = LJ imu m + LJUinoAn , 
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FIG. 2. The plane of 
incidence contains the nor­
mal to the discontinuity (Ox) 
and the propagation vector 
k. The surface of discontin­
uity (zy) contains the com­
ponent of the propagation 
vector along the discontin­
uity q. 

of all the divergent waves k(d) lie in the plane of 
incidence formed by k(i) and by the normal to the 
undisturbed discontinuity n (the x axis). In fu­
ture we shall consider the intersections of the sur­
faces V ( K) (Fig. 1) with the plane of incidence. 
We introduce the angles a and {3 defining the 
direction of K : 

k;(q cot()(, qsin~, qcos~). (4.1) 

The angle a between the vector k and the 
normal n lies in the plane of incidence. The angle 
{3 (Fig. 2) defines the position of the plane of inci­
dence. The intersection gives the curves V ( a) 
[ more accurately V ( a, {3 ) for {3 = const ]. The 
equations of these curves will be obtained from 
(2.7) and (2.8) by the substitution 

H q-H 
cos 6 = cos()( /j- + sin ()( qH . (4.2) 

We introduce the angle 1/J, which plays a fundamen­
. tal role in subsequent development: 

cot ~=(w-q.v)fqvx. (4.3) 

By using the relation (2.6) we shall obtain a formula 
for lf! in terms of the velocity vectors 

(4.4) 

A simple geometric meaning of the angle lf! (Fig. 2) 

i = 1, 2, .. '7 

follows from (4.4): in the system of coordinates in 
which the velocity of the fluid v has only a normal 

<3·3) component, it is the angle between the total velocity 

Here we take into account the fact that both incident of the disturbance ± VK + vxn (taking drift into 
and divergent waves, generally speaking, may appear a~count) and the velo~ity of this disturbance ± VK 
in IT and in IT. The specific form of the coefficients with respect to the flmd at rest. 
will be needed only for the calculation of the ampli- The solution with the minus sign corresponds to 
tudes, where it will be given in due course. the wave for which w0 < 0 and for which the propa­

gation vector and the phase velocity are therefore 

4. THE LAWS OF REFLECTION AND REFRACTION oppositely directed [ oA,..., exp (k· r +I wo It)]. 

The relation between the angles of incidence and 
reflection or l"efraction may be obtained by equating 
the frequency w and the component q of the propa­
gation vector along the surface of discontinuity for 
the incident and the divergent waves. 

From this it follows that the propagation vectors 

Such disturbances result from the fact that the flow 
is "supersonic" for the given disturbance. 

It follows directly from (4.3) that the angle lf! 
is not changed on reflection. This is the content 
of the law of reflection 

ljJ(i) = tj;Cr). (4.5) 
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FIG. 3. The angles 
ex and tji for w0 > 0 (on 
the left) and for w0 < 0. 

It follows from (4.3) that the law of refraction has 
the form 

{Vx cot~} + _9_ {V} = 0. q (4.6) 

In the case when the tangential components do not 
undergo a discontinuity (ordinary hydrodynamics, 
parallel and perpendicular shock waves in magne­
tohydrodynamics), q { v} = 0, and the law of re­
fraction takes on the simple form of the "law of 
tangents" :4 

tan ~/tan~= vjv. (4.7) 

We now turn to the construction of the propaga­
tion vectors K restricted by the relation (4.5), i.e., 
to the construction of a(r) in terms of the given 
a(i). We see (Fig. 3) from (4.4) that the segment 
of the normal - vx subtends the angle 1/J at the 
end of the vector V = VK [in the case of the plus 
sign in formula (4.4)], or subtends the angle rr -1/J 
at the end of the vector V = - VK [in the case of 
the minus sign in ( 4 .4)] . It follows from the law 
of reflection (4.5) that if the segmen~ subtends the 
angle 1/J at the end of the vector V(l) of the in­
cident wave, then it must subtend either the same 
angle 1/J or the angle rr -1/J at the ends of the vec­
tors y(r) for all the reflected waves. This means 
that the only waves that can be reflected are those 
for which the ends of the vectors y(r) lie on the 
circle drawn through the ends of the segment -vx 
and the end of the vector y(i). We note that in vir­
tue of the central symmetry of the surfaces V ( K), 
each point of the graph of V corresponds also to 
a point of the graph of - V. Naturally, this prop­
erty is preserved also for a central section, such 
as the section defined by the plane of incidence. 
We can thus construct, with the aid of the velocity 
vector diagram in the plane of incidence, the phase 
velocity vectors satisfying the boundary condition 
of reflection. To do this we must draw a circle 
through the ends of the segment - Vx and the. end 
of the velocity vector of the incident wave V(l). 
The points of intersection of this circle with the 
curves V ( 01) will give the ends of the required 
vectors V = VK, V = - VK for the intersections 
with the larger and the smaller circular arcs re­
spectively (for 1/J < rr/2) (Fig. 4). The points of 
intersection of the circle with the curve V + ( 01) 

will give the velocity vector (and the correspond­
ing angle 01) for fast sound. The points of inter­
section of the circle with the curve V _ ( 01) will 

FIG. 4. Arrows indicate points of intersection of the t/I circle 
circle (dotted line) with the curves V +(ex), VA (ex), V_( ex). The 
vectors drawn from the center to these points are the veloci­
ties of the reflected waves behind the shock wave, which arise 
when the V wave is incident on the discontinuity. The point 
at which the+ tji circle is tangent to V + (dot-dashed line) divides 
the V +-waves into incident and divergent ones. 

In the drawing the magnetic field lies in the plane of the 
discontinuity and in the plane of incidence. This case is not 
in any way special for making the construction. 

give the velocity vector (and the corresponding 
angle) for slow sound. The points of intersection 
of the circle with the curve VA ( 01) will determine 
the velocity vector for the Alfven wave. 

For a given value of vx. each angle 1/J corre­
sponds to its own circle ( 1/J circle ) . To construct 
the refracted waves we must, in accordance with 
the law of refraction (4.6), find the angle If; in_ 
terms of the angle 1/J, and then construct the 1/J 

circle on the segment - vx. The points of inter­
section with V ( 01) and V ( 01) respectively de­
termine the types and velocities of the disturbances 
which are restricted by the laws (4.5) and (4.6). For 
the Alfven waves, the angles 01 may be easily found 
in terms of the given angle 1/J also in analytic form, 
by making use of formulas (4.4), (2.7), and (4.2). 
However, in the case of magnetoacoustic waves the 
analytic solution of the problem of refraction, i.e., 
of determining the angles 01 in terms of the given 
angle 1/J, requires the solution of the complete 
fourth-degree equation, obtained from (4.4), (2.8), 
and (4.2). The graphical method given above is 
nothing but a graphical solution of this equation. 

In the case of normal incidence, the circle de­
generates into a straight line and the obvious solu­
tion is given by the points of intersection of the 
normal to the discontinuity with the curves V ( 0!) 

of the diagram. 

5. INCIDENT AND DIVERGENT WAVES 

In accordance with the results of the preceding 
section, the points where the circle drawn through 
the ends of the vector - nvx intersect the curves 
of the velocity diagram determine the phase veloc­
ity vectors of all the waves that are interrelated by 
the reflection condition. 
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Among these waves there are divergent ones as 
well as those incident on the discontinuity, and we 
must know how to classify them by making use of 
this property. 

However, we have no justification for using 
phase velocities to separate waves into incident 
and divergent ones, since the phase and the group 
velocities may have opposite signs for certain 
angles of incidence. In such cases, as has already 
been pointed out by Mandel'shtam, 12 the physical 
requirement, that the energy should flow away 
from the boundary of the discontinuity for the re­
flected or for the refracted wave, must lead to the 
classification of waves in terms of the group ve­
locity vgr = 8w/8k. Taking into account the fact 
that V ( IC) is a function of cos e only, we shall 
obtain in the system of coordinates I: 

Vgr _ -I- ( V + ~[kx [Hxk]]) + 
--L x dcos6 Hk' v. (5.1) 

For the classification of waves we need the com­
ponent Vir normal to the discontinuity. By going 
over to the angle a we can easily obtain 

V~r = ~~x = V.v+ (v (()()COSO(- ~~-sin()(). (5.2) 

We turn once again to the If; circles to obtain a 
geometrical interpretation. We now regard equa­
tion (4.4) as the equation for If; in terms of a and 
we take the derivative 

a<ji = sin_•t [v + (v(O()cos ()(- aav sinO()]. (5.3) aa. V X Stn a, X- a, 

By comparing formulas (5.2) and (5.3) we arrive at 
the relation 

(5.4) 

which is of importance to us, where the group ve­
locity is determined in the coordinate system in 
which the surface of the shock wave is at rest. The 
divergent waves in II and II must satisfy the in­
equalities: 

V~r=vx+(V(O()COSO(- ~~sinO(]> 0, 

- (-- - av -] v~r=vx+ V(O()COSO(- a(i sinO( <O .. 
(5.5) 

Similarly the incident waves will be determined by 
the inverse inequalities. In accordance with (5.4), 
we need merely determine the sign of 81f;/8a to 
determine the sign of the group velocity. 

As can be seen from the expression for the group 
velocity (5.3), its projection on the direction of the 

propagation vector coincides with the phase velocity 
in the coordinate system in which the liquid is at 
rest.* 

Consequently, in the case of normal incidence 
of the disturbance, the components of the phase and 
of group velocities along the normal to the discon­
tinuity coincide, and in the case of normal incidence 
the division into incident and divergent waves can 
be carried out by making use of the components of 
the phase velocity (taking drift into account) .1 In 
the diagram (Fig. 4) these components are given 
by the points of intersection of the curves V (a ) 
with the x axis, into which the If; circle degener­
ates. The end of the segment Vx separates the 
waves into incident and divergent ones in accord­
ance with the inequalities: 

(5.6) 

where the upper sign in the inequality corresponds 
to divergent, and the lower sign corresponds to in­
cident waves. 

In the ca~;;e of oblique incidence, the 1/J circle 
intersects both parts of the curve VA (a), since 
they are also circles [cf. (2.7)] and have a point 
common with the If; circle at the origin. A simi­
lar assertion can be made with respect to the curve 
V _ (a), both parts of which pass through the ori­
gin and have a common tangent at that point. Two 
of the aforementioned four points of intersection 
of the If; circle with VA (a) and V _ (a) may 
lie on the smaller arc of the If; circle and corre­
spondinthatcaseto w0 <0 (for 1/J<JT/2). We 
now turn to the intersection of the If; circle with 
the curve V + (a). We consider the case Vx < 
V + ( 1T). In the case of normal incidence (If; = 0) 
we have two waves, one (a = 0) divergent and 
the other (a = 1r) incident. As If; increases the 
points of intersection with the If; circle move along 
the curve V + (a ) towards each other. At the same 
time the angle a for the incident wave decreases, 
while for the divergent (reflected) wave the angle 
a increases as If; increases, i.e., in accordance 
with (5.4) and (5.5), the condition 81/J/oa < 0 is 
fulfilled for the former and the condition aq;/aa 
> 0 is fulfilled for the latter wave. When ·81j!/8a 
= 0 the If; circle is tangent to the curve V + (a) 
and both roots a of Eq. (4.4) coincide. We denote 
the corresponding values of If; and a by 1/Jm and 
am. We see from (5.7) that at this point for both 

*This result depends in an essential way on the fact that 
the dispersion is a purely spatial one. If V depends not only 
on x , but also on Cll, the component of the group velocity 
does not coincide with the phase velocity. 
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waves we have v~r = 0.* 
As ljJ increases further, the ljJ circle no longer 

intersects the curve V +· The real solutions are 
now replaced by complex conjugate solutions, which 
correspond to traveling waves. One of these must 
be discarded since it does not satisfy the boundary 
conditions a.t oo, while the other one represents a 
surface wave that is attenuated as it penetrates into 
the fluid. We note that while in an ordinary fluid 
surface waves can arise only in the case of propa­
gation of sound, 3•4 in the present case surface V + 
waves can arise also in the case of reflection of 
V _ or VA waves. 

6. STABILITY OF SHOCK WAVES 

In accordance with the results of Akhiezer, 
Liubarskii, and Polovin1 a shock wave is stable 
with respect to splitting up only in the case when 
the problem of the incidence of an arbitrary small 
disturbance on the discontinuity has a unique solu­
tion. t The system of equations for the amplitudes 
of the divergent waves in terms of the amplitudes 
of the incident waves (3.3) contains (after the am­
plitude of the shock wave itself has been eliminated) 
six equations, from which it follows that six waves 
must diverge from a stable discontinuity. The en­
tropy wave always gives rise to a diverging wave 
in II and to an incident one in IT. Therefore in 
the vector diagram a stable wave must correspond 
in II and in II to five divergent waves of types 
V± and VA for aribtrary 1/J. When ljJ = 0 (nor­
mal incidence) this requirement yields the condi­
tions of Akhiezer, Liubarskii, and Polovin, 1 leading 
to waves of three kinds: 

a) vx<V_, V_<vx<VA 
b) V_<vx<VA, 10..<vx<V:. (6.1) 

c) VA<vx<V.,_, V:.<vx. 
We shall show that the number of diverging waves 
for any 1/J (any a ) is equal to the number of di­
vergent waves for ljJ = 0. 

The component of the group velocity along any 
given direction in the case of Alfven waves is equal 
to the phase velocity in this direction, as can be 
seen directly from the dispersion law w0 = ± k • u. 
Therefore the component along the normal, 

*We note that the 1/J circle is tangent to the curve V + at 
only one point, since in the opposite case there could be four 
points of intersection of the 1/J circle with the curve V +' which 
is impossible. Indeed, the equation for the points of intersec­
tion of the 1/J circle with v + and v_ is of the fourth degree, 
but two points of intersection always lie on the curve V_. 

tWhen the number of diverging waves can only exceed the 
number of equations, for example, in the case of a perpendicular 
shock wave, the conclusion with respect to instability also 
follows from the well-known argument given in the book by 
Landau and Lifshitz. 13 

vr • n = v~h' and the inequality that determines 

the divergent wave are generally independent of 
the angle. 

In accordance with the results of the preceding 
section the number of divergent waves does not 
change when ljJ < 1/Jm in the case of magnetoacous­
tic waves. As ljJ increases one divergent (and 
one incident) wave disappears at the point 1/Jm, 
but a surface wave appears which, from the point 
of view of counting up the number of unknowns in 
the boundary conditions, must be included among 
the divergent waves. Thus, the number of unknowns 
is, as before, equal to the number of equations, only 
we must now consider all quantities to be complex. 
[Similarly, in the case when the 1/J circle for a 
certain value 1/Jm' is also tangent to the curve V _ 
in addition to intersecting two curves, then in pass­
ing through 1/Jm' the surface wave disappears, and 
in addition to the waves present previously two 
traveling V _ waves appear, one of which corre­
sponds to 8¢/8a > 0 and is incident, while the 
other, for which 8¢/8a < 0, is diverging (the 
converse holds in IT). Leaving aside the question 
as to when such a case can be realized, we see that 
it does not change the number of divergent waves. ] 
Thus, the number of diverging waves does not de­
pend on the angle of incidence, and in order to have 
stability with respect to splitting up for an arbitrary 
angle of incidence of the disturbance on the discon­
tinuity (provided only that the equations are not sep­
arable) it is sufficient that the conditions (6.1) 
should be satisfied. 

If the disturbances were classified by means of 
their phase velocities (taking into account the drift 
of the disturbance with the stream) we would have 
arrived at a "paradox" of the instability of shock 
waves in magnetohydrodynamics. Indeed, in virtue 
of the spatial dispersion, there will be such a range 
of angles 1/Jo < 1/J < 1/Jm in which the components of 
the phase and of the group velocities of fast sound 
along the normal to the discontinuity have opposite 
signs. In connection with this, if a classification 
with respect to phase velocity is carried out, the 
number of diverging waves for this angular inter­
val differs from the number of diverging waves 
determined according to their group velocity, i.e., 
from the number of diverging waves for 1/J = 0. * 

*We note that while opposite signs for the phase and the 
group velocities occur very infrequently in the usual problems 
involving a boundary (cf. reference 12), in the case of a moving 
boundary three always exists such a range of velocities of this 
motion, that in a system of reference in which the boundary is 
at rest the phase and the group velocities have opposite signs 
(if yPh > Vgr, it is sufficient, for example, that yPh > V > Vgr). 
In spatial problems, such a difference in sign may arise for 
arbitrary velocities v . within a definite range of angles of in­
cidence if spatial dispersion is present, as in our case. 
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We now consider a parallel shock wave in which 
the magnetic field is directed along the normal to 
the surface of discontinuity. In the case of exact 
normal incidence the perturbed equations can be 
separated into those for purely acoustic and for 
Alfven waves. Akhiezer, Liubarskii, and Polovin, 1 

in considering unidimensional disturbances, have 
naturally drawn the conclusion that parallel shock 
waves that do not satisfy the inequalities v > s, 
v < s [type b in (6.1)] are unstable. However, 
since the separation of a purely acoustic wave cor­
responds to an isolated point in the space of propa­
gation vectors, it is necessary to investigate 
obliquely-incident disturbances in order to obtain 
a final answer to this problem. In such an inves­
tigation the boundary equations for the Alfven wave 
can be separated from the equations for the mag­
netoacoustic waves, and in order for stability to 
exist it is necessary to have two diverging Alfven 
waves. The waves of type b are unstable in agree­
ment with the results of Akhiezer, Liubarskii and 
Polovin, 1 since among the divergent waves they 
have only one Alfven wave. 

7. FREQUENCY SHIFT 

When monochromatic disturbances interact with 
a shock wave, the Doppler effect and the disconti­
nuity in the propagation vector at the surface of 
discontinuity cause the generator frequency n0 

and the received frequency n' to be different. In 
the case of magnetohydrodynamics there are more 
possibilities in this connection than in an ordinary 
fluid, 4 since we can compare the frequencies of 
different types of disturbances, for example, the 
frequency shift of the reflected V +• V _, VA waves 
with respect to the frequency of the incident V+ 
wave, etc. We shall restrict ourselves to the case 
of normal incidence, for which there is no need to 
use the graphic method. We assume that the re­
ceiver and the transmitter are at rest with respect 
to IT. In accordance with (2.6), we obtain for the 
absolute value of the propagation vector in II (lim­
iting ourselves to the solution involving the plus sign) 

k = cu f (V (oc) + ~·v). (7 .1) 

Here, as before, w is the frequency in the system 
I. In II we should place a bar over all the quanti­
ties with the exception of w. The relation between 
w and n0 and n' is given by: 

Here a(i) and a(r) are equal to 0 or rr, depend­
ing on the direction of the incident and the reflected 
waves, sin a= 0. In IT we should place a bar over 

the quantities k and a. From (7 .1) and (7 .2) we 
obtain formulas for the relative shifts D. = ( n0 - n')/ 
n0• For the sake of definiteness we shall limit our­
selves to those incident waves which have a propa­
gation vector directed towards the boundary, and 
to divergent waves which have a propagation vector 
directed away from the boundary. In II the inci­
dent wave corresponds to a= rr, the diverging wave 
corresponds to - a = 0; the converse holds in IT. 
The relative frequency shift is given by the follow­
ing expressions - in the case of reflection in II: 

vx [V (0) + v (1t)] 
A = -["'V"('1t)----;-:{ v:-x~> ]"[ V"""(O,-) +..,--v x""""'l-

in the case of reflection in IT: 

V X v ( 1t) + V (0) 
A=-=--· ; 

V(O) V (1t)- Vx 

in the case of transmission from II into IT: 

vx [i7 (1t)- V (1t) + {Vx}l 
A- . 

- V (1t)- <vx>l [V (1t)- vxl ' 

in the case of transmission from IT into II: 

vx V (0)- V (0) -{vx} 
A==---· . 

V (0) V (0) + V X 

(7 .4) 

(7 .5) 

(7 .6) 

In all the above expressions we must everywhere 
in place of V ( 7T) and V ( 0) substitute the veloc­
ity of the incident disturbance, in place of V ( 0 ), 
V ( 7T) we must take the velocity of the disturbance 
of the type with which we are concerned. By meas­
uring the different D. we obtain from (7 .3) to (7 .6) 
a system of equations from which v /v, V (i) /V, 
V(i)fv, (i =±,A) may be found. If we know Vi/v, 
we can easily obtain s/v, u/v, and Hx/H (simi­
larly in II and in IT): 

If the values of s and p (or H) are known, we 
can obtain not only the ratios, but the quantities 
that characterize the discontinuity themselves. 

The author takes this opportunity to thank A. I. 
Akhiezer, G. Ia. Liubarskii, and R. V. Polovin for 
communicating the results of their work prior to 
publication, and for useful discussions. 

Note added in proof (September 30, 1958 ) . As 
shown by Syrovatskii [ J. Exptl. Theoret. Phys. 35, 
(1958), Soviet Phys. JETP 8 (in press)] because 
of plane motion in shock waves (in contradistinc­
tion to the essentially spatial rotational discontinui­
ties) there always exists a special plane of inci­
dence (which coincides with the plane of motion in 
the shock wave), in which the boundary conditions 
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for the Alfven and the magnetoacoustic waves be­
come separable. In particular, such a separation 
always occurs in the case of normal incidence. As 
a result of this shock waves of type b are unstable 
(cf. the case of a parallel shock wave), while rota­
tional discontinuities which should also be included 
in type b, are stable with respect to splitting up. 
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