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The three-dimensional hydrodynamic problem of the dispersion of the particles emitted in 
the collision between a nucleon and a nucleus has been solved by a method which is differ­
ent from, and more exact than, that applied in references 1 and 2. The distributions of the 
energy, the angles, and of the transverse momenta are investigated with the aid of the solu­
tion obtained. The error in the final formulae is ~ 20%. 

1. INTRODUCTION 

THE hydrodynamic theory of multiple production 
of mesons in the collision of high energy particles 
was developed in a paper by Landau.1 In view of 
the great mathematical complexity of this theory, 
the author confined himself to an approximate 
theory in which the final formulae have only log­
arithmic accuracy and describe only collisions 
between identical particles. Better accuracy is 
needed for a comparison of theory and experiment. 
Furthermore it is necessary to generalize the re­
sults for the case of collisions between a nucleon 
and a nucleus, since these are usually observed 
in experiment. 

In the investigation of the collision process be­
tween a nucleon and a nucleus one usually uses the 
tube model,3 i.e., it is assumed that the nucleon in­
teracts only with the nuclear matter inside a tube 
which it cuts out of the nucleus during the colli­
sion. In the present paper we restrict ourselves 
to the case where the ratio n of the tube length 
over the linear dimension of the nucleon, which 
is approximately equal to the number of nucleons 
in the tube, does not exceed 3. 7. 

Belen'kii and the author4 solved the first part 
of the problem: the determination of the total num­
ber of particles N0 formed during the collision of 
the nucleon with the nucleus. They obtained the 
formula N0 = k ( n + 1 ) EV4, where E0 is the en­
ergy of the primary nucleon in the laboratory sys­
tem, and k is a constant factor. 

In the present paper we investigate the distri­
bution of the secondary particles over the angles, 
the energies, and the transverse momenta. Since 
the energy, the transverse momentum, and the 
angle under which it is emitted are determined by 
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the components of the 4-velocity of the particle, 
our problem is to find the distribution of the par­
ticles in velocity space. The symmetry properties 
of the distribution were discussed in reference 5, 
where it was shown that the distribution should, 
in some special coordinate system close to the 
center of mass system, be symmetric with respect 
to the plane perpendicular to the direction of mo­
tion of the colliding particles. Apart from this it 
must, of course, have cylindrical symmetry. 

According to the hydrodynamic theory, the mo­
tion of the system after the collision is governed 
by the relativistic hydrodynamic equations for the 
ideal liquid: 

aT~ I axk = 0, T;k = (p +B) U;Uk + pg;k, (1) 

where p is the pressure, E the energy density, 
ui the 4-velocity of the medium, and gik the 
metric tensor with components - g00 = g11 = g22 = 
g33 = 1, gik = 0 for i ~ k. For the equation of 
state we take the equation of state of the extremely 
relativistic medium p = E/3. 

Below we shall use a system of units in which 
the Planck constant ti, the Boltzmann constant, 
and the velocity of light are equal to unity. 

2. ONE-DIMENSIONAL STAGE OF THE EXPAN­
SION OF THE SYSTEM 

Owing to the Lorentz contraction of the colliding 
particles the first stage of the motion of the system 
after the collision will be approximately one-dimen­
sional. In this case we can make a special change 
of variables, proposed by Khalatnikov,6 which brings 
the nonlinear equations (1) into the form 

3a2x 1 a'T/2 - iPx 1 ay2 - 2ax 1 ay = o, (2) 

where TJ = tan-1 v, y = ln (T/T0 ), v and T are 
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the velocity and the temperature of the medium, 
and T0 is the initial temperature. The coordinate 
x and the time t are connected with the potential 
X through the relations 

x = e-Y ( ~ sinh 'TJ- ~~ cosh "l) ; (3) 

t = e-Y ( ~~ cosh 'TJ - ~~ sinh 'TJ) • ( 4) 

The stage of one-dimensional motion was discussed 
in references 2 and 5 for the case n < 3.7. It is con­
venient to use a coordinate system in which the col­
liding particles have opposit~ly equal velocities. As 
a consequence of the discontinuities in the initial 
conditions the motion of the medium cannot be de­
scribed by a single analytic formula. We have to 
do with three regions. Bordering on the vacuum 
we have the region of traveling waves, whose en­
tropy is very small towards the end of the one­
dimensional stage, but which carry a significant 
part of the energy.2•7 The main part of the entropy 
is contained in the region of the so-called nontriv­
ial solution, which is enclosed by traveling waves 
on both sides. In the following we shall be mainly 
interested in this region. 

According to reference 5, the solution of Eq. (2) 
in this region is of the form 

x= ~3 (t-t0 :.,Jeu ( e-2Y'lo(Yy'2 -~)dy' 
11/va 

(5) 

where l = Y4 ( n + 1) d, t0 = % ( n - 1) d , and d is 
the "length" of the Lorentz contracted nucleon. Re­
placing the Bessel function 10 by its asymptotic 
expression, we may write this solution, by (3) and 
(4), in the form 

3 1 f2-x2 + (1 t+x 1 t-x)'l•. y=- n~ n-A.- n-A.- , 

1 t+x x 
'TJ = 2 In 1 _ x or v = T , 

where !l = l N 611' I y I . 

(6) 

(7) 

We find the distribution function of the entropy 
with respect to the velocities dS/d1) in the one­
dimensional stage, using (5). Here we must re­
member that the different volume elements of the 
nuclear matter decay into the various particles at 
different time instants. We therefore require the 
distribution function dS/d1) not for a given time 
instant t = const, but on some surface t = t(x). 
We assume that this surface is space-like.* We 
can then choose a coordinate system t', x' such 
that the derivative dt' /dx' is zero at an arbitrary 

*The following calculations will justify this assumption. 

given point of this surface. In this coordinate sys­
tem the usual formula dS = su0' dx' is valid in the 
neighborhood of the given point, where s is the 
density of the entropy. Transforming back to the 
original coordinates, we obtain 

Going over, using (3) and (4), to the independent 
variables 1), y, we write (8) in the form: 

(8) 

dS = - s0e2Y( ~~ dy + 1/ 3 ~t d'Tj) , (9) 

where 1/J = ax/oy - x, and s 0 is the initial den­
sity of the entropy. The derivatives appearing in 
this expression are equal to 

~t = Jl"3 e-Y (z _j_ _ t _j_ -l) 10 (w / y2 _ !L) (10) 
ily 2 ily 0 ill) y 3 ' 

~<jl-= V3e-u(z_j_- 1/ato_j__ 1(ato)Io (· 1 y2 - !L). 
ill) 2 ill) ily y 3 

(11) 
If the temperature of the medium drops to the criti­
cal value Tk already in the one-dimensional phase, 
the distribution of the entropy over the velocity is 
given by the formula 

dS i 2Yk il<jJ (lJ, Y k) So { "12 } 

lEI = -3 Soe ilyk = V"67t I Yk I exp 6yk ' (12) 

where Yk = ln ( Tk /T 0 ), and 80 is the total en­
tropy. This case may arise in the collision of two 
heavy nuclei with low energies, when the number 
of secondary particles is large (so that hydrody­
namics applies), but the initial temperature is 
small; then the three-dimensional stage cannot 
develop. 

Thus the so-called quasi..,.one-dimensional ap­
proximation8 amounts to the assumption that for­
mula (12) gives the final solution to the problem 
even for high energies of the colliding particles. 
The distribution of the secondary particles over 
the transverse momenta is in this approximation 
completely determined by the thermal motion of 
decay.9 

The present paper is mainly devoted to the in­
vestigation of the three-dimensional stage of the 
motion of the medium. We use an essentially dif­
ferent approach from that of references 1 and 2. 

3. THREE-DIMENSIONAL STAGE 

As our system has boundaries in the transverse 
direction, the matter flow will not be strictly one­
dimensional, and the deviation from unidimension­
ality will increase as time goes on. At t "' a 
(a = 1/ J.l. is the initial radius of the system, J.l. is 
the mass of the 71' meson) the matter flow will be 
essentially three-dimensional. The general pic-
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FIG. 1. Illustration of the three-dimen­
sional expansion at the time instant t- a. 
The dotted line represents the boundary 

lf·l 
---1-~.:!:._-+-~x between the regions of one-dimensional 

and three-dimensional flow, x is the 
direction of motion of the colliding par­
ticles. 

ture of the three-dimensional motion is the follow­
ing. At the initial moment the temperature at r =a 
drops suddenly from T0 to zero, i.e., a sharp dis­
continuity arises. This discontinuity subsequently 
splits into two weak discontinuities bounding the 
region of three-dimensional matter flow. At the 
borderline with the vacuum the velocity of the me­
dium is equal to the velocity of light, and the boun­
dary between the regions of one-dimensional and 
three-dimensional flow, like every weak perturba­
tion, moves with the velocity of sound c = 1/13 
with respect tothe medium. For those elements 
of the medium which were in the one-dimensional 
stage, the region of three-dimensional flow is en­
closed between the limits r =a-ct and r =a+ t. 
For the elements moving along the x axis (in the 
case of nucleon-nucleon collisions everywhere, 
with x ~ 0), this region has smaller dimensions 
(Fig. 1), owing to the Lorentz transformation of 
the transverse components of the velocity (or the 
time). The instant of time when the region of 
three-dimensional flow reaches the axis of the sys­
tem can be called by convention the end of the one­
dimensional stage. According to what has been 
said above, the end of the one-dimensional stage 
occurs sooner for the slow elements of the medium 
than for the fast ones. 

Because of the cylindrical symmetry of the prob­
lem and because of the relation uiui = -1, only two 
of the components ui are independent. It is conve­
nient to introduce new variables 1], ~, which auto­
matically satisfy the above-mentioned conditions: 

uo = cosh 1J cosh ~, u1 = sinh 1J cosh ~, 

u2 =sinh ~cos cp, u3 =sinh ~sin cp. 

Here tanh ~ is the radial velocity in the coordinate 
system moving with the medium along the direction 
of the x axis. 

We make use of the following circumstance in 
solving the three-dimensional problem. According 
to (7), v = x/t in the one-dimensional stage, i.e., 
each element of the medium moves with almost 
constant velocity, as a quasi -inertial system. It i~ 
natural to expect the radial dispersion of the me­
dium not to change the quasi-inertial character of 
the motion along the x axis, i.e., Vx R! x/t also 
in the region of three-dimensional flow. The dis-

cussion of the three-dimensional stage is therefore 
greatly simplified by eliminating the velocity Vx = 
x/t through a transition to a suitable (curvilinear) 
coordinate system. This leads to the following co­
ordinates: 

The coordinate lines w = const in the x, t 
plane are straight lines x/t = tanh w. Hence the 
trajectories of the points with coordinates w = 
const coincide with the trajectories of those ele­
ments of the medium moving as inertial systems. 
The variable t' is the proper time of such ele­
ments. 

We introduce polar coordinates r, cp in the 
plane perpendicular to the x axis. 

We can use the formulae of general relativity 
to write down the equations of motion in the new 
coordinates. The generalization of equation (1) 
to the case of curvilinear coordinates is: 10 

v- k a( -gT,) - _.!... agkz pz 
v- g axk - 2 ax i . (13) 

In the transition from the coordinates xi to the 
new coordinates xi', the tensor quantities trans­
form according to the law ui' = ( axi' /axk) uk etc. 

., ~ p 
With our choice of coordinates x1 ( x = t', x = 
w, x2' = r, x3' = cp ) the metric tensor and the 
4-velocity have the form 

, , '2 , , ') 
g 00 = -1, gu = t , g22 = 1, gaa = r·; g;k = 0 when i=f=k 

uo' =cosh ry' cosh ~, u11 = -f,- sinh TJ' cosh.~, 

u21 =sinh~. u31 = 0, 

where TJ' = 1J- w. 
It is hardly possible to solve (13) exactly. We 

use an approximate method, whose main features 
will be explained in the example of one-dimensional 
flow. It is convenient for this purpose to rewrite 
Eq. (13) in a form which is solv'ed for the deriva­
tives ay/axi: 

~ - _!_ --..!:!._ a (V=iuk) - uk (au,_- _ _!_ uz agk_l) . 
ax' - 3 V -g axk axk 2 M (14) 

We convince ourselves of the equivalence of Eqs. 
(13) and (14) by "projecting" them on the direction 
of ui and on the direction perpendicular to ui. In 
the one.,.dimensional case the equations (14) have 
the form 

ay 1 . h I ' all' \ 1 ( h 2 , + 2) t' all' . a(,) =-3 sm 2'Yl \1 + ac,)-1- 3 cos 'Yl at• , 
(15) 

t , ay 1 ( h 2 1 2>(1 +all')+ 1 'nh 2 1 t'all' at·-= 3 cos 'Yl - a(,) -3si 'Yl . at'(i6) 

The following assumption, which will be justi­
fied below, is essential for the whole approximate 
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method of solution:* ment that it be impossible to determine all deriva­
tives of first order from the equations of motion 

t'a"ff' ;at, a"ff' ;aw<t:;:.,l. (13) by fixing the initial values on this surface. 
With this assumption, (15) and (16) take the form Some cumbersome calculations, which we shall 

ay 1 aw = - 1/a sinh2"fl'; 

t'ay 1 at= 1/ 3 (cosh 2"fl'- 2). 

Eliminating 17' from (17) and (18), we obtain 

(17) 

(18) 

(3tay 1 at+ 2)2 - 9 (ay 1 aw)2 = 1. (19) 

The general solution of this equation is, as is 
easily seen, 

y = 1/ 3 [(cosh 2oc- 2) In (t' I~)- w sinh 2oc], (20) 

where a and f3 are arbitrary constants. We note 
that the general solution (20), together with the re­
lation 17' = a, is at the same time the exact solu­
tion of (15) and (16). A special case of this solution 
is the traveling wave which is obtained by setting 
tanh a = 1/-!3 . In our coordinate system the veloc­
ity of the medium tanh 17' changes thus from zero 
in the center of the system to the velocity of sound 
in the region of traveling waves. 

It is customary to use the boundary conditions 
to obtain the solution of the problem from the gen­
eral integral. However, we cannot do this, as our 
approximation is, as is seen from the following, 
an asymptotic one, which is valid only for large t'. 
We therefore use the asymptotic formula (6), which 
in our variables has the form 

(21) 

where T = ln ( t' I !l). This expression satisfies 
Eq. (19) and is therefore the required solution. 
It is obtained from (20) by setting 

~ = ll, tanh 2oc = w / 't. (22) 

Substituting (21) in (17) or (18), we obtain 17' = a. 
The derivatives 817' /8w, 817' /8r are of order 1/r; 
they can thus indeed be neglected for T » 1. Hence 
the velocity of the medium tanh 17' is a slowly vary­
ing function of w and T, and its magnitude does not 
exceed the velocity of sound. These properties are 
the mathematical expression of the fact that the flow 
along the x axis is quasi-inertial. 

The boundary between the regions of one-dimen­
sional and three-dimensional flow is given by a sur­
face on which the derivatives of the hydrodynamic 
quantities are discontinuous, i.e., by the character­
istic surface of Eq. (13). We can find the differen­
tial equation determining the characteristic surface 
~ (xi) = 0 by the usual method11 from the require-

*This corresponds to neglecting the derivatives of the 
slowly varying function f in reference 1. 

not repeat here, lead to 

2 (uk a'i. )2 - gik a~ a~,; = 0. 
axk ax' ax 

(23) 

The physical meaning of this equation is that the 
characteristic surface always moves with the ve­
locity of sound with respect to the medium. 

With the help of (23) we determine the equation 
for the boundary between the regions of one-dimen­
sional and three-dimensional flow. Noting that 
~ = 0, 17' = a on this boundary, we obtain 

2 ( coshoc ~~ + si,~ba ~= y + (~~ r-( + ~=-t- (~~ r = 0. 
(24) 

Dividing (24) by ( 8~/8r )2, we obtain an equation 
for r = r ( w, t'): 

2 (. h ar sinh a ~)2 (~)2 _ (____!__ ~)2 = 1.(25) 
\COS IX ffF' + t' aw + at' t' aw 

We seek a solution of this equation in the form 
r = r (t'). Then (25) takes the form 

dr / dt' = + (cosh2oc + 2)-'1•. (26) 

With neglect of the derivatives of a we obtain a 
solution which satisfies the initial conditions: 

r = a - t' I V cosh 2oc + 2. (27) 

We turn to the discussion of the region of three­
dimensional motion of the medium. We make the 
substitution 

Y = Yt + Y2• (28) 

where y1 is the value of y in the absence of 
transverse dispersion, i.e., the solution of the one­
dimensional problem obtained earlier. The vari­
able y2 is therefore responsible for an additional 
lowering of the temperature as a consequence of 
the radial motion of the medium. Corresponding 
to (28) we also transform the components of the 
energy-momentum tensor: Tik = e4Y1 Iik· Then 
(13) takes the form 

(29) 

For the derivatives of y1 we have to substitute 
the expressions (17) and (18), in which we replace 
17' by the known function a. The boundary condi­
tions for Eq. (29) have the form 
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on the surface r = a- t' I V cosh 2a + 2: 

Y2 = 0, ~ = 0, TJ' = a. (30) 

After the substitution (28) the variable w clearly 
enters into the equations of motion (29) and into 
the boundary conditions (30) only through the slowly 
varying function 0!, whose derivatives can be neg­
lected, as was shown earlier. We can therefore 
regard 0! as a parameter, and look for the solu­
tion in the form 

y2 = y2 (t', r, a), ~ = ~ (t', r, a), •/ = •/ (t', r, a). 

We thus obtain the important result that we have 
separated the variables in the problem of the three­
dimensional motion of the medium in the asymptotic 
approximation, which, as a consequence, lowers the 
number of independent variables from three to two. 
We note that this result is exact in the region of 
traveling waves, since the derivatives of 0! are 
strictly zero in this region. 

We expand the required functions in a series in 
powers of 0!. Since 0! is an odd function of x, 
the expansions of y2 and ~ contain only even 
powers of 0!, and the expansion of 17', only odd 
powers of 0!. The main part of the entropy is con­
centrated in the region where w "' 1. In this re­
gion, according to (22), a "' 1/ T, i.e., 0! is an 
asymptotically small quantity. We therefore con­
fine ourselves to the linear approximation in a, 
i.e., we require the solution in the form 

y2 = y; (r, t'), ~ = ~ (r, t'), TJ' = af (r, t'). 

4. AVERAGING OF THE HYDRODYNAMIC QUAN­
TITIES OVER THE RADIUS 

A consequence of the equations of motion is the 
conservation law for the entropy, which, in curvi­
linear coordinates, has the form 

_1_ a (V=--;?suk) = o. (31) 
v -g axk 

After the substitution s 2e3Yt according to (28), 
we can write Eq. (31) in our approximation as 

a (rs2uO') + ~ = 0 (32) 
at' ar 0 

The conservation law for the quantity J s 2u0' r dr 
follows from this equation. It implies that the 
amount of entropy enclosed in the interval dw is 
the same as that in the absence of the transverse 
dispersion, which means it is given by the formula 

where 771 is the value of 11 in the absence of the 

transverse dispersion. Since the derivative d77/dw 
is asymptotically equal to zero, the same formula 
describes the distribution dS/d77 in the three­
dimensional stage. Formula (33) can approximately 
be written in a form analogous to (12): 

1 dS 
s; dc,; 

exp ("tJ 2 /6yJ) 

V 6r. I Y1l 
(34) 

The temperature of the elements in the interval 
dw with different coordinates r reaches the crit­
ical value Tk at different time instants. The val­
ues of y1 = Yk - y2 which have to be substituted in 
(34) in order to find the distribution of the produced 
particles with respect to 17 are therefore different 
for different elements. However, this difference is 
small. Estimates show that the decay of the ele­
ments of the medium occurs at t' "' a. At that time 
the system is still quite uniform in the transverse 
direction, and y2 "' 1. In view of the weak depend­
ence of (34) on y1 we can therefore neglect this 
difference in the calculation of the distribution 
function dS/dT/. We shall assume that all elements 
of the medium with the same coordinate w decay 
simultaneously when their average temperature 
reaches the critical value. We restrict ourselves 
to the computation of this average value of the tem­
perature. 

In the calculation of the distribution function for 
the produced particles with respect to the trans­
verse components of the velocity we must take ac­
count of the thermal motion of the particles, which 
is superposed on the hydrodynamic motion in a 
given volume element. The thermal motion of the 
particles plays indeed a fundamental role, so that 
the radial component of the hydrodynamic 4-veloc­
ity is small at the instant t' "' a, and u2 "' 1. For 
each plane w = const we can therefore take a value 
for the hydrodynamic radial velocity which is av­
eraged over the radius. 

Below we shall estimate the accuracy of the re­
sults obtained in this approximation. 

To find the average values of the hydrodynamic 
quantities, we make use of the conservation laws 
in the integral form, which refer to finite, instead 
of infinitesimal, elements of the medium. These 
laws were also used in reference 1 in the investi­
gation of the three-dimensional stage of the motion 
of the medium. However, our separation of variables 
gives the possibility to obtain more accurate results. 
We integrate Eq. (29) over the radius in the region 
of three-dimensional flow, i.e., from r =a-ct' to 
r = a + t' for t' < ..f3 a, and from r = 0 to r = 
a + t' for t' > ..f3 a. Replacing all hydrodynamic 
quantities under the integral sign by their average 
values and taking these outside the integral, we ob-
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tain a system of ordinary differential equations for 
the mean values of the hydrodynamic quantities. 
These equations were solved numerically. The re­
sults of the numerical calculation of the hydrody­
namic quantities averaged over the area of the 
transverse cross section are shown in Fig. 2. 

05 1.0 tn{ 

FIG. 2. Curve 1) y2 ; curve 2) ln sinh~; curve 3) f = "'';a.. 

5. DISTRIBUTION OF THE PARTICLES IN 
VELOCITY SPACE 

As mentioned earlier, the distribution of the 
particles with respect to the transverse compo­
nents of the velocity depends essentially on the 
thermal motion of the particles. We retain the 
notation ~ for the hydrodynamic velocity, and 
denote the radial component of the actual 4-veloc­
ity of the particles by sinh t. We write the re­
quired distribution function F ( 1), t) in the form 

(35) 

The quantity N0F 1 ( 1)) d1J is the total number of 
particles in the interval d1], and the function 
F2 ( 1], t) gives the distribution of the particles 
with respect to the variable t for a given 1). 

The functions F d 1J) = N01dN/ d1J and F 2 ( 11, t) 
must, of course, be normalized: -

ClO 

~F2('1j, C)d~=l. 
-CX> 0 

FIG. 3. Function F 1 ('f/) for n = 1. The initial energy 
E0 is equal to: 1) 1012 ev, 2) 1014 ev, 3) 1016 ev, 4) 1016 ev. 

The function F 1 ( 1J) is computed with the help 
of formula (33) and the curves in Fig. 2. Figures 
3 and 4 show the results of the calculation for 
Tk = JJ.. According to (34), F 1 ( 1J) can approxi­
mately be represented by a Gauss function. We 
therefore approximate the function F 1 ( 1J ) in the 
center of mass system by a Gauss function with 
parameter L: 

F d"'l) =--= (2-:-:L)-';, exp (- "f/2 / 2L); (37) 

L = 0.56Jn ~- + 1.6Jn -n! 1 + 1.6. (38) 

where M is the mass of the nucleon. 
Formulae (37) and (38) give an approximation 

to the curves in Figs. 3 and 4, with an error not 
exceeding 10%. 

We turn to the computation of the function 
F2 (1), t). The thermal motion of the particles at 
the moment of breakup of the element into separ­
ate particles may be described by the formulae 
for the ideal gas. In the rest system of the ele­
ment of the medium the distribution of the particles 
in momentum space is known to have the form 

dN = A dp~ dp~ dp~ 
~xp (£'IT)± 1 ' 

where the plus sign refers to Fermi statistics, 

(39) 

and the minus sign to Bose statistics. The factor 
A is determined from the normalization condition 
on the function F2• We introduce a coordinate sys­
tem in which the element moves along the z axis 
with the velocity Vz =tanh ~. Energy and momen­
tum are then transformed in the following way: 

E' = E cosh!';- Pz sinh~; 

p; = Pz cosh~- E sinh~; Px = Px; P~ = Py· 

81J 

FIG. 4. Function F 1 ('f/) for the collision of a nucleon with 
the tube in the system of oppositely equal velocities of the 
colliding particles. n = 2 for curves 1, 3, and 5; n = 3. 7 for 
curves 2, 4, and 6. E0 is equal to: 1, 2) 1012 ev, 3, 4) 1015 ev,' 
and 5, 6) 1018 ev. 
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Formula (39) takes the form 

dN = A (cosh~- !J- sinh~) 
[ (E coshE- p_sinh ~) J-1 

X exp T " + l dpxdpydpz. 
(40) 

Changing to cylindrical coordinates in momentum 
space and integrating over the azimuthal angle and 
the component Px• we obtain 

co 

F2 ("tJ, C) =4rcAm3 sinh 1: cosh 1: ~ ( +)n-1 {cosh~ cosh 1: K1 

n-1 

x (n -f-cosh~ cosh/:) / 0 (n ; sinh~ sinh/:) 

-sinh~ sinh 1: Ko ( n ~ cosh~ cosh 1:) 

x/1 (n-;-sinh~sinh1:)}· (41) 

In the integration we expanded the denominator of 
the expression under the integral sign into a series 
in powers of exp { - ( E cosh ~ - Pz sinh ~ )/f } 
and applied the relations 

co 

Km (A)=~ e-l.coshtcosh(mt) dt; I m (A) 
0 

Integrating (39) over all momentum space we simi­
larly obtain an expression for A: 

00 

1 4 2T "' ( -)n 1 I( 2 (nm IT) A= rcm ..:::.J + - n (42) 
n-1 

Figure 6 shows the distribution functions with re­
spect to the transverse momenta ( JL /N0 ) dN/ dp 1 = 
Fdcosh 1: for Bose particles for Tk = JL and vari­
ous values of the parameter ~. 

The hydrodynamic transverse velocity ~ at the 
moment of break-up is with good accuracy ("" 10%) 
given by the approximate formula 

. h • _ O 53 ! n + 1 )0,4 :'Eo )1/14 -~•J6L sm .; - . \-2- \"AT e ·· . (43) 

It follows from this formula that the transverse 

X 
5[J 

FIG. 5 

momenta of the fast particles should on the aver­
age be smaller than the transverse momenta of the 
slow particles. At energies of 1012 to 1013 ev the 
difference between them is, however, very small. 
Only at energies of order 1015 to 1018 ev do the 
transverse momenta of the fastest particles be­
come significantly smaller (by a factor of 1/ 2 or 
%) than those of the other particles. 

6. DISTRIBUTION OF THE PARTICLES WITH 
RESPECT TO THE ANGLES, ENERGIES, AND 
TRANSVERSE MOMENTA 

After the determination of the function F ( 1), 1:), 
we find the distribution of the particles with respect 
to the angles, energies, and transverse momenta 
with the help of the formula 

tanht; E h . h tan e =sinh l) ' = flo cosh 1) cos 1:' p .L = flo sm ?; • 

Figure 6 shows that for the overwhelming majority 
of the particles Pl > JL, i.e., tanh ?; is rather 
close to unity. The angular distribution of the 
particles is therefore quite accurately given by 
the relations 

1 dN exp (-1)2 I 2L) 
N0 dll =F1 ("tJ)= Jl<!1tL (44) 

tan 0 = l f sinh "'· (45) 

In going over to the laboratory system we change 
1J in formula (45) to l1 + 1Jc, where V c = tanh 7Jc 
is the velocity of the center of mass system with 
respect to the laboratory system. Since 7Jc is a 
big quantity, we can write 

.JL!!!!. 
Ill, dA 

025 

0.20 

O.f5 

o /! J 4 5 o 7 A 8 

7' 

FIG. 6.Values of sinh(: 1) 0; 2) 0.5; 3) 1; 4) 1.5; 5) 2; 6) 3. 
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& ( 2 = exp (- Yl- ..,,,). 

Formulae (44) and (45) give a more anisotropic 
distribution than the corresponding formulae of 
Landau. 

(46) 

A very sensitive characteristic of the angular 
distribution is the quantity X = x/x1 introduced by 
Kaplon and Ritson, 12 where x = ~3;4 ~1/4 , and ~1/4 
and ~3/4 are the angles within which 1,14 and % of 
all particles are, respectively, emitted; x1 is the 
analogous quantity for the case of an isotropic dis­
tribution in the center-of-mass system. 

To find the distribution of the particles over the 
transverse momenta, we have to compute the inte­
gral 

-00 

The factor exp ( -7]2/6L) in formula (43) is sig­
nificant in the region 71 ~ /L , where only a small 
fraction of the particles is to be found. The re­
quired distribution can therefore with good accuracy 
be written in the form 

: 0 d; =f2(0,C), P.L=(Lsinht• (47) 

For the determination of the energy distribution we 
have to integrate the function F ( 7J, t) over the 
surface E = const in velocity space. We shall not 
concern ourselves with this distribution in detail. 
We remark only that since the transverse momenta 
of all particles are of the same order, the energy 
of the particles can approximately be written as 

(48) 

where p 1 is the average value of the transverse 
momentum of the particles. Formulae (44) and 
(48) determine the order of manitude of the energy 
distribution of the particles. 

We estimate the accuracy of the formulae ob­
tained. Formula (9), which describes the distribu­
tion of the entropy with respect to the velocities in 
the one-dimensional state, is exact. In the inves­
tigation of the three-dimensional stage we made 
use of the asymptotic approximation, i.e., we neg­
lected quantities of order 1/T. In order to esti­
mate the effect of this neglect on F1 ( TJ ), it is 
convenient to consider the conservation law for 
the entropy (31). The most significant of the terms 
discarded in equation (32) has the order of magni­
tude o (a -71' )/ow ~ ( 1 -f)/ 2T. The inclusion of 
this term leads to a change of 5 to 7% in the en­
tropy enclosed in the interval dw, which also 
gives a measure for the error. Replacing all hy­
drodynamic quantities by their averages over the 

area of the transverse cross section entails a fur­
ther approximation. The corresponding error was 
estimated in the following fashion. The region of 
three-dimensional flow was subdivided into three 
sections with respect to the radius, and the aver­
aging was then done over these sections separately. 
The more exact solution obtained in this way was 
used to calculate the function F 1 ( 1J) for the ener­
gies 1012 ev and 1015 ev. The result agrees with 
that obtained earlier within "' 10% of error. 

Despite the very approximate character of the 
treatment of the three-dimensional stage of the 
motion of the medium, the accuracy of the com­
puted function F 1 ( 1J) appears to be rather good 
("' 10 to 15% ). The physical reason for this is 
that the elements of the medium move almost in­
ertially along the x axis at the moment of transi­
tion to the three-dimensional stage. As a conse­
quence, the distribution of the entropy with respect 
to the velocities dS/d7J is mainly determined by 
the one-dimensional stage of motion. 

Analogous estimates yield "' 20 to 25% as the 
accuracy for F 2 ( 1J, t). In this case the effect of 
the three-dimensional stage is small also on ac­
count of the great role played by the thermal mo­
tion of the particles. We note that the transverse 
hydrodynamic velocity increases slowly with in­
creasing energy, whereas the role of the thermal 
motion becomes less significant. The accuracy 
of the calculation of F 2 ( 1J, t) is therefore the 
better, the lower the initial energy, in contradis­
tinction to the situation in the case of F 1 ( 1J). 

In conclusion we remark on the following inter­
esting point. It is seen from Figs. 3, 4, and 6 that 
the functions F 1 ( 1J ) and F 2 ( 1J, t ) depend very 
weakly on the energy of the primary nucleon. Ac­
cording to (38) and (43), 

L ~In (£0 / M), sinh~~ EJ". 

At the same time the initial width of the disk changes 
by three orders of magnitude when the energy is in­
creased from 1012 ev to 1018 ev. This points to a 
very weak dependence of the results on the initial 
conditions. We may therefore suppose that, for 
n > 3. 7, the distribution over energies and angles 
is described by formulae which are not very differ­
ent from those obtained above. One should also ex­
pect that the quantum effects, 13 which are strongest 
at the initial moment, do not change our results 
significantly. 

The author is very obligated to the late S. Z. 
Belen'kii. The author thanks E. L. Feinberg for 
valuable advice and L. V. Pariiska and N. E. 
Nikulina for doing the numerical calculations. 
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