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Kato1 and Temple2 have given a method for estimating the accuracy of approximate eigen­
values for a linear self-adjoint operator. We show that it is also possible to estimate the 
accuracy of calculated quantum-mechanical mean values of certain functions of the co­
ordinates. 

KAT01 and Temple2 have given a method for es­
timating the accuracy with which the variational 
method yields the eigenvalues of a linear self-ad­
joint operator. Relying on Kato's results, we give 
a method of evaluating how accurate is a calcula­
tion of the quantum mechanical average of certain 
functions F ( q), where q is the set of coordinates 
describing the system. 

Let H be a linear self-adjoint operator, A.n its 
eigenvalues and <Pn its eigenfunctions, which form 
a complete orthonormal system. Let us assume 
that the interval (a, {3) contains one and only one 
eigenvalue ( A.p) of the operator H: 

("l'n- a) Ct-n- ~)):. 0, n =/= p; 

(1-'P- a) (l'p- ~) < 0, n = p. 
(1) 

Let 1/Jp be an approximation to the function <Pp 
and expand it in a series of the <Pn: 1/Jp = :E an<Pn· 
If, now, we multiply the first of the inequalities 
(1) by I an 12 and sum over all n >" p we obtain 

(2) 

It is not difficult to see that 

n 

n n 

if the trial function 1/Jp is normalized. Adding the 
term with n = p to each sum in (2) and solving for 
this term, we get 

-laP I2 (Ap-a) (Ap- ~) + ~;2 + (H -a) (H- ~) ):.0, 

E2 = (Hijlp. Hljlp)- H2 • 
(3) 

Identical transformations with the use of the second 
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of the inequalities (1) leads to 

2 •2 +(H-t.p)(H+1,p-a-~J _ (4 ) 
1 -I ap I <;;: (I.P _a)(~_ I.P) = RP. 

In order that the interval ( a, {3) contain the low­
est eigenvalue A.0 , it is necessary to take a = -co, 
{3 = A-1. Then (4) becomes 

(5) 

We note that if the interval (a, {3) does not 
contain any eigenvalues of H, then the first of 
the inequalities (1) holds for all n. Multiplying 
it by I an 12 and summing over all n, we obtain 
E 2 + ( H- a ) ( H - {3 ) ?:: 0. Taking a = A-0 and H < 
{3 < A-1, we obtain the following lower limit for A.0: 

(6) 

The derivation given above for formulas (4), (5), 
and (6) has been carried out for a discrete spec­
trum, but it holds as well when the operator H has 
a mixed spectrum, with discrete and continuous 
parts. The inequalities (4) to (6) are derived by a 
somewhat different method in reference 1. 

Given a function F ( q), let us evaluate the ab­
solute magnitude of the difference between the true 
value FT = ( <Pp, F<Pp) of its quantum mechanical 
average and the approximate value FA = ( 1/Jp. FI/Jp). 
The Buniakovski-Schwarz inequality gives 

I F T -FA I = I~ F (I9P I - I ljlp /) (I 'f'p: + lljlp i) dq I 

<;;: [~ I F [2 (I 'f'p I + lljlp i) 2 dq · ~ (jtyp 1-lljlp 1)2 dq]''•. 

Consider first the integral 

~ (19p i -jljlp [)2 dq = 2 (I- ~I YP llljlp I dq). 

(7) 

From the inequalities (4), 1 - I J 1/Jp<Ppdq 12 ::s Rp. 
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and I J 1/J~o/p dq I :::: J ll/Jp II o/p I dq, it immediately 

follows that 

(8) 

We write the second factor in (7) in the form 

~ IF 12 (I cpp i + I h 1)2 dq 4 ~ : F 121 \jlp 12 dq 

+ 4~ IF 12 1 hI (I Cflp 1- I \jlp I) dq + ~IF i2 (I Cflp 1-; \jlp 1) 2 dq. 

Application of the Buniakovski-Schwarz inequality 
and inequality (8) then leads to the formula 

~IF ,2 (I !f'pl +I \jlp /) 2 dq< 4 lf'"pl + 4 (IF l4p ·2Sp)11' 

+ ~ IF 12 (i·Cflp 1-1 \jlp 1)2 dq, (9) 

-p \ ·" 12 d If' = ~ cp I 'I'P I q. 

When IF I is bounded, so that IF 12 < B for all 
q, we finally obtain 

i F.r -FA i < [2Sp (41Ffp + 4 v 2Sp IF j4p + 2BSp) ]"'. 

(10) 

if, on the other hand, IF I increases without 
limit for sufficiently large q, while I o/p 12 de­
creases, we can break up the configuration space 
into two parts I and II, so that I F 12 < B in the 
region I and 

~I F 12 (I Cflp /2 + I \jlp /2) dq<{_: I F l2p 

(II) 

because the wave function decreases rapidly. Then 

~ IF 12 (I Cflp 1-1 \jlp J)2 dq ~ 2BSp + ~ I F 12 (I Cflp 12 + I \jlp 12) dq 
(I I) 

and we obtain (10) once more. 
Similar formulas can be derived for quantum 

mechanical transition probabilities. 
Let o/n be the real function, 1/J an approxima­

tion to o/n· Let us evaluate 

Assuming that IF 12 < B for all q, and noting 

that J o~ dq :::: 2Sn ( J o/nl/Jn dq is taken to be posi­

tive), the Buniakovski-Schwarz inequality gives 

j(iJm, Fcpn)- (\jim, FtJln) I< (2Sm iF j211 )'j, 

+ (2Sn IF 12m)'/• + 2 (BSmSll)'l• • 
(12) 

If I F I increases without limit at large q, then 
we break up the configuration space into two parts, 
region I where I F 12 < B, and region IJ in which 

~ (\jl;. + cp;.) IF l 2 dq~ j F j2"', 

(II\ 

We then obtain (12) once more. 
If, in (12), we take m = n, we obtain a new in­

equality for the mean which is sometimes more 
convenient than the inequality (10). 

It is not difficult to see that the right hand sides 
of (10) and (12) go to zero as the approximation 1/J 

approaches the exact function cp, i.e., for a suffi­
ciently close approximation to qJ the estimates 
here obtained become as accurate as desired. 

In applying the above formulas, it is of course 
not necessary that the approximation 1/J be ob­
tained by a straight variational method. It could 
be obtained by some other approximation proced­
ure (e.g., perturbation theory); the inequalities 
will then give an estimate of the accuracy of this 
method. If the energy levels are sufficiently well 
known, the formulas (10) and (12) can, for example, 
be used to obtain an estimate of the accuracy of the 
quantum mechanical calculations of the diamagnetic 
susceptibility or of transition probabilities in atoms 
or molecules. 

Let us estimate, for example, the accuracy of 
the calculation of the diamagnetic susceptibility of 
the helium atom. It is sufficient to consider only 
the calculation of the mean square radius r 2• Fol­
lowing Hylleras, 3 we take our approximate ground 
state wave function to be 

ljl = Ae-sk/2 (1 + 0.08uk + 0.01 t 2k2), 

s=r1+r2, i=rl-r2, u=r12=Jr1-r2l• k=3.63, 

where r 1 and r 2 are the radius vectors to the 
first and second electrons. With this approxima­
tion, H =- 2.9024 atomic units; experimentally, 
the first and second energy levels are A.0 = 
-2.9035 and A.1 = -2.175 atomic units. 

In applying the inequality (10), we break up the 
configuration space r1o r 2 into region I: r 1 < 10 
and II: r 1 > 10 atomic units. An estimate of the 

integral J I F 12 (lo/p 12 + 11/Jp 12 ) dq [neglected in 

deriving (10)] over the region II shows that this 
integral is one-millionth of the part retained. Sub-
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stituting (5) in (8) and (8) in (10), we obtain 
I FT- FA 1/1 FA I < 0.2. The diamagnetic suscep­
tibility calculated with the approximation 1/J differs 
from the measured value by less than 1%, which 
does not disagree with our estimate of the ac-curacy 
of the variational method. 
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