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A method of disentangling given by Feynman is used to solve the problem of the way the 
polarization of a particle possessing a magnetic moment changes in an external magnetic 
field. 

IN the present paper we treat the problem of the 
change of the polarization of a particle possessing 
a magnetic moment under the action of an external 
magnetic field of arbitrary time dependence. The 
solution is obtained by means of a method given by 
Feynman1 for disentangling operator expressions 
containing noncommutating operators. This method 
has hitherto not been widely applied. It has been 
used to solve only one problem - that of the har
monic oscillator subjected to the action of an arbi
trary external force (cf. reference 1, Sec. 5, and 
reference 4). Therefore it is of interest to solve 
other quantum-mechanical problems by the Feyn
man method, in order to elucidate the properties 
of this method and the difficulties that arise in 
applying it to concrete problems. One such prob
lem, which can be solved completely by the Feyn
man method, is considered below. The results 
themselves are not new, and are for the most 
part contained in a paper by Majorana,2 where 
they were obtained by a different method. 

Let us consider a particle with magnetic mo
ment M = ytil. Here y is the gyromagnetic ratio 
and I is the spin angular momentum of the par
ticle. The transformation of the wave function 
lj! ( t) from the time t to the infinitesimally dif
ferent time t + ~t is accomplished by means of 
the unitary operator 

S (t, t + M) = 1 + iy H (t) I M = exp (iy H (t) I M), 

where H ( t) is the external magnetic field. From 
this we get for a finite time interval: 

N ~ 
(1) 

S (i2, i 1) = l~ n exp (iy H (t;) I M;) = exp [ iy ~ H (t) I dt], 
t, 

where in this formula t is an ordering parameter 
and indicates the order of action of the infinitesi-
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mal operators 1 + iyH (t) ~t. Because of the fact 
that the components of the vector I do not com
mute with the exponent in Eq. (1) we cannot pro
ceed with the usual rules familiar in analysis. 

We shall try to represent S ( ~, t1 ) in a 
"disentangled" form: 

S (t2 , t 1) = exp (af 1) exp (bl o) exp (ci'_1), 

_A 0 A ;.- 1\, A 

I±1=(+1x-tly)H 2, Io=Iz, (2) 

where a, b, c are for the present unknown func
tions of the time. 

By means of Eq. (2) one can easily find the 
probability amplitude of a transition from the state 
I jm > at the time t1 to the state I jm'> at the 
time t2, since on using for the right-hand ex
ponent the series expansion 

..... co ck "k 
exp (c/ - 1) = ~ kf I -1 

k-o 

we see that when it acts on 1/!jm only a finite num
ber of terms of this series remain. Similarly, 
lJ!jm' exp ( af1) reduces to a finite sum, and conse
quently the transition amplitude < jm' I S ( ~. t1) I jm > 
also contains only a finite number of terms. 

To disentangle the operators ih i0, L1 we use 
the following artifice: we break up H1I1 into a sum 
of two terms: 

HI= xi1 + (H1- x) I 1 + H0Io + H_l!_l, 

H±1 = (+Hx+iHu)!V'I, Ho=Hz 
(3) 

and apply to the first term the theorem on the dis
entangling of an exponential factor proved by Feyn
man (cf. reference 1, Sec. 3): 

t. 

S (t2 , t 1) = exp [ iyi1 ~ x (t') dt'] 
t, 

t, 

X exp (iy ~ [(H1 -x) I~+ H0I~ + H_1Ld dt} (4) 
t, 

t. tl 

I~ (t) = exp [- iyi1 ~ x (t') dt' J I~'-exp [iyi1 ~ x (t') dt']. 
tl tl 
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We set 
I, 

a(t) = iy~ x(t')dt' (5) 
I, 

and determine a ( t) in such a way. that the oper
ator I1 in Eq. (4) may be completely disentangled. 
To do this we first find the explicit form of the 
operators I~ ( t). Let Ip. ( a) = e ai1 Ip.e -O!It ; 
differentiating with respect to a, we obtain the 
system of equations 

di 1 (rx)jdrx = 0, di 0 (rx)jdrx = -I 1 (rx), 

di _1 (rx)jdrx = -I 0 (rx) 

with the initial conditions Ip. ( 0) = ip.- The solu
tion of these equations is 

II(rx) = 71 , Io(rx) = 10 -rxf1 , LI{rx) 
" .... cc.2 ..... 

=L1-rx/0 + 2 I1. (6) 

In an analogous way we get 

Now substituting the operators I~ from Eq. (6) 
into Eq. (4) and equating the coefficient of I1 to 
zero, we get the equation for the determination 
of a ( t) 

dajdt = iy(H1 + H0a + 1ML1a2), a (t1) = 0. (8) 

Hereafter we shall everywhere set t1 = 0. 
We now have only to disentagle Io by means 

of a transformation of the type (7), and S ( t, 0 ) 
is then reduced to the form (2), where a ( t) is 
determined from Eq. (8) and the determination 
of b ( t) and c ( t ) reduces to quadratures: 

I 

b (t) = iy ~ [H 0 (t') + H_1 (t') a (t')] dt'. 
0 

I 

c (t) = iy ~ H _1 (t') eb(l'> dt'. 
0 

(9) 

An essential point is that a, b, c depend on the 
gyrolllagnetic ratio y, but do not depend on the 
value of the spin j. Therefore the solution is ob
tained all at once for particles of arbitrary spin 
with the same value of y. 

Let us consider an example: a constant field, 
and perpendicular to it a uniformly rotating alter
nating field 

(10) 

Such a magnetic field is used in experiments on 
the measurement of the magnetic moments of 
atomic nuclei, and in this connection was first 
considered by Rabi. 3 Equation (8) takes the form: 

. da sin 6 ( ·). . 
- l - =-- e-• ~ - 1/ e•l..~a2) -a cos a 

d1: Vz 2 ' 

where 

't = wot, wo = -y V H~ + H~, tan6 = H1/H 0 , f..= wjw0 • 

Solving the equation with the boundary condition 
a ( 0 ) = 0, we find 

a {'t) = 2 (e-iJ.~- e-''"~)j(n1e'<J.-'">~- n2), 

eb<~> = (n1- n2)2e-i'"T/(n1e'<J.-'")T- n2)2, 
c ('t) = 2 (eW-!J.)T- 1)/(n1ei(A-!J.)T _ n2), (ll) 

fl.= cos a+ n1 sin e;V2," 
where ni> n2 are the roots of the equation 

x2 + 2 V2x (cos a- t..)/sin a- 2 = o. 
Suppose the particle has spin ! and that at the 

initial time the z component of the spin is ! . By 
means of Eq. (2) we find that the probability of re
versal of the spin during the time t is given by 

P (t) = 1/ 2 / c (t) e-b(l)f2J2 
11•+-112 

_ q2 sin2 6 . 2 (wt 2 ) 
- 1 + q" - 2q cos 6 sm 2 V 1 + q - 2q cos a , 

q = W 0jw = 1/f.., 

which agrees with the result of Rabi. 3 

(12) 

Let us consider another representation of the 
S matrix, which is more convenient for particles 
with larger spin j; we try to represent S ( t, 0 ) 
in the form 

S (t, 0) = exp (irxfx) exp (i~fu) exp (iylz), (13) 

where 01, {3, y are real functions of t (the 
reality follows from the unitary character of the 
S matrix; for the representation (2) a, b, c do 
not have to be real). Carrying out calculations 
analogous to those performed above, we find that 
the disentangling of Ix, iy, iz is possible and 
01, {3, y are determined by a system of equations 
of the type of Eq. (8), but more complicated. An 
important fact is that these equations involve only 
the gyromagnetic ratio y, and not the spin j it
self. Consequently, a, {3, and y do not depend 
on j and can be expressed uniquely in terms of 
the a, b, c determined from Eqs. (8) and (9). 
But each factor in Eq. (13) is the operator for a 
finite rotation around one of the coordinate axes, 
and therefore 

s (t, 0) = Dw {<p, -11-; ljl), (14) 

and furthermore the Eulerian angles cp, J., If! 
that define the resultant rotation are uniquely re
lated to a, b, c and do not depend on j. To 
express cp, J., 1/J in terms of a, b c it suffices 
to examine the S matrix for a particle with spin ! 
situated in the same magnetic field. From Eq. (2) 
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we find the form of the S matrix in the system of 
functions I !m>, m = ±!: 

s<'i.)(t, 0) = (eb/2- (a~/2) e~b/2 (c/V2) e-b/2) = D('/,) (rp, &,1)1), 
- (af112) e-b,2 e-b/2 

(15) 
from which we have 

s1n .-- = ! - e- , e2"~' = e2'W - -,-----
. S 'ac b)''• . a ., c 

2 \ 2 c (eb- acj2) ' - a (eb- acj2) 

(16) 

For the example (10) discussed above we have 

. s q sin e . ("'t -v 1 2 2 ") sm 2 = sm 2 + q - q cos u • 
J! 1 + q2 - 2q cos e 

(17) 

The probability of a transition during the time 
t from the state I jm > into the state I jm'>, 
for a particle with spin j, is given by 

Pm+m' (i) = j D~{!n' (rp, %, 1)1) /2 

=[(j+m)! (j-m)! (j+m')!(j-m')!] cos4i(.f) (18) 

[ I S \,Z"-m+m' l" 
'1;1 tan 2 1 

X .L.i (-1)" ' J J 
, v! (v- m + m')! (j + m- v)! (j- m'- v)! 

If we take here j = ! , m = ! , m' = - ! and sub
stitute the value (17), we get the result (12). 

In the general case the polarization state of a 
particle is characterized by a density matrix p. 
Expanding it in terms of the tensor operators 

TIM• we find the way the polarization changes 
with time: 

p= 

If the particle has not only a magnetic dipole 
moment but also higher multipole moments, a 
complete disentangling of the S matrix cannot 
be carried through. This is due to the fact that 
for I > 1 the commutatbr [ TIM• TIM' L of 
two tensor operators of the same rank I cannot 
be expressed in terms of tensor operators of this 
same rank. It is always possible however, to 
separate out from the S matrix the part corre
sponding to the magnetic-dipole part of the Hamil
tonian, - y (HI). A meaning can be given to this 
if it is permissible to regard the .rest of the Ham
iltonian as a perturbation. 

I am sincerely grateful to I. S. Shapiro for his 
interest in this work and a number of valuable 
suggestions. 
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