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The problem of symmetries in the angular and energy distributions of secondary particles 
produced in nucleon-nucleus collisions or in collisions of two nuclei is considered on the 
basis of the hydrodynamic theory of multiple production of particles. It is shown that such 
symmetry appears in a certain special system of coordinates which is close to the center
of-mass system. 

A hydrodynamic theory of multiple production of 
particles in the collision of two identical particles 
has been developed in a paper by Landau. 1 In this 
case it is obvious that the angular and energy dis
tribution of the particles produced by the collision 
will be symmetrical in the center-of-mass system 
with respect to the plane perpendicular to the direc
tion of motion of the colliding particles. In the 
present paper we shall show that in the collision 
of a nucleon with a nucleus the angular and energy 
distributions will also be approximately symmet
rical in a certain system of coordinates which is 
close to the center-of-mass system. 

It is convenient to conduct the calculations in 
the reference system in which the colliding par
ticles have equal and opposite velocities. Because 
of the strong Lorentz contraction of the nucleon 
and nucleus the disturbance produced in the nu
cleus by the nucleon cannot spread far in the trans
verse direction during the time of the collision; 
we can therefore assume that the nucleon inter
acts only with a tube of nuclear matter lying di
rectly in front of it.2 Also because of the Lorentz 
contraction the motion of the system in the first 
moments after the collision will be in only one 
dimension. In proving the symmetry we need con
sider only the one-dimensional stage of the motion 
of the nuclear matter. 

As has been shown by Khalatnikov, 3 an arbitrary 
one-dimensional motion of a medium in the extreme 
relativistic case is described by a potential x 
which satisfies the equation 

3iPx.- a•x. -2 ax.= 0 
aTJ• ay• ay ' (1) 

where y = ln ( T/T0 ), 11 =tanh - 1 v, T and v are 
the temperature and speed of the medium, and T0 

is the initial temperature.* The coordinate x and 

*The speed of light is set equal to unity. 

the time t are expressed in terms of the potential 
x in the following way: 

Thus if the function X ( 1), y) has been found, 
Eqs. (2) and (3) can be used to find the quantities 
11 ( x, t ) and y ( x, t ) , provided that 

a("fJ, y)ja(x, t)=f=O. 

(2) 

(3) 

In the present paper we confine ourselves to 
the case in which the ratio n of the length of the 
tube to the dimensions of a nudeon, which is ap
proximately the same as the number of nucleons 
in the tube, does not exceed 3.7. In this case 
(see reference 4), after passage of the shock waves 
beyond the boundaries of the system, a flow of the 
matter into empty space begins, in the form of 
running waves of rarefaction. This motion is de
scribed by the formulas: 3 

"fj=±V3y, 

(x-x1) j(t- t 1) = (v ±c)/ (1 ± vc). 

(4) 

(5) 

Here c = 3-1/l is the speed of sound; the sign + 
refers to the wave propagated in the positive x 
direction, and the sign - refers to the wave prop
agated in the opposite direction. The instant t1 

is that of the start of the efflux of the matter, and 
x1 is the coordinate of the edge of the system at 
this instant. We choose the origin of our system 
in such a way that for the wave travelling to the 
right we have x1 = t1 = 0. We denote the corre
sponding quantities for the wave going to the left 
by l and t 0• As can easily be shown, l = 
! ( n + 1 ) d, t 0 = ! ( n - 1 ) d, where d is the thick
ness of the relativistically contracted nucleon. 
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<X=-1), ~=1J-V3y, u=xeu. According to Eq. (4) 8 ( Tj, y )/8 ( x, t) = 0 in 
the region of the running wave, so that the running 
wave is just that particular solution that is not 
contained in the general solution of Eq. (1). 

After this Eq. (1) and the boundary condition (6) 
take the forms: 

After the encounter of the two running waves 
a region comes into existence in which the vari
ables Tj and y are independent, and which is 
accordingly described by Eq. (1). At the bounda
ries of this region and the running waves the con
ditions (4) and (5) must be fulfilled; using Eqs. (2) 
and (3), we get from these the following boundary 
conditions for x: 

u,(f.- 2u"'~ + u /3 ... 0, (8) 

u = 0 for ~ = 0. (9) 

x = 0 for 1J = V3 y, (6) 

We carry out a Laplace transformation on the 
variable {3 and seek the solution in the form 
U = a ( p) eka. The quantity k is found from 
the conditions (8) and (9): 

k=p-Vp2 - 1/a, 

x =-leY siiili r1 + t0 (eY cosh 1J- 1) 

for 1J =- V3y. 
(7) 

where we must take the minus sign for the square 
root. Making the inverse Laplace transformation, 
we get the solution in the form 

The solution of (1) with the boundary conditions (6) 
and (7) can be obtained in the most convenient form 
by the following approach. We shall seek the solu
tion in the regions Tj > 0 and Tj < 0 separately, 
and require that the two solutions agree for Tj = 0. 
Let us first find the solution for Tj < 0. To do this 
we introduce the new variables 

u = 2~i ~ exp {- V3yp + 1J V p2 - 1 / 3 } a (p)dp. (10) 

Let us now consider the region TJ > 0. After the 
replacements 

u' = u + l sinh r1e~ u- t 0 eY (cosh 1JeY - 1 ), 

the problem reduces to the previous one, so that for TJ > 0 

u1 = Z~i ~ exp {- V3 yp- 'Y/ V p2 - 1/ 3 } a 1 (p) dp -l sinh 'Yje2Y+ t0eY (cosh 'YjeY-1). (11) 

The unknown functions a ( p) and a1 ( p) are found from the conditions that u = u1 and 8u/8TJ = 8u1 /8TJ 
for Tj = 0. Simple calulations give: 

( l 1 ! 0 ( 1 1 ) 
a P)=-2(p+2tV3)Vp2 - 1f3 +2 p+2fY3-p+1fY3' (12) 

(13) 

After this, by means of Eqs. (10) and (12) or (11) and (13) we get the solution:* 

- u V3 a u 
X= .~3 (t- to 7J~ )eY ~ e-W Io (V y' 2 -1)2 /3 )dy' + -2- to a;; ~ e-Y' Io(V y' 2 - "f/2 I 3)dy'. (14) 

11 11'3 11 IV 3 . 
For the collision of identical particles it is obvious that t 0 = 0, and the solution found here is the same as 
that obtained by Khalatnikov. 

By means of Eqs. (1) to (3) we can easily obtain the expressions for the derivatives of t and x with re
spect to y and Tj: 

.aL = e-u (£.'!'. cosh 1J- a_<P_ sinh 1J)• _il!_ = e-u ( £<Ji_cosh 1J - -1- aq, <;inh 1J) 
ay ay a1J ' a1J \ a1J 3 ay ' 

ax (. aq, aq, ) ax r aq, 1 aq, \ ·a-y = e-u -a·-Y sinh 1J- -a:;..· cosh 1J , - = e-Y 1 -- sinh 1J - - - cosh 1J , ., a1J , a1J 3 ay ; 

Here 1/J = 8x/8y - X· The calculation of 81jJ/8y 
and 81jJ/8TJ gives: 

aq,_= Y:l e-u(t-~-..!:..t0 _!__..!:..to)Io(z)· 
a11 2 a11 3 ay 3 ' 

z = V Y2 - 1J2 I 3. 

(15) 

(17) 

aq, V3 _ ( a a ) -- = -e Y l-- t0 ----l 10 (z) ay ~ ay a1J ' (16) 
For an overwhelming majority of the particles z 

*The solution of the one-dimensional problem for n ~ 3. 7 has also been obtained in somewhat different form in reference 5. 
It is not difficult to reduce the solution there obtained to the form (14), which is convenient for our purposes, 
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is large at the end of the one-dimensional state. 
I1 we use the first two terms of the asymptotic 
expansion of the Bessel function, Eqs. (16) and (17) 
can be written 

a<jJ V3 _ ( a J , t~ _ /1 (z') --=-leY ---1 / 0 (z)---e y __ 
ay 2 ay , s V3t z' ' 

~<¥- = V3 le-Y__!___ / 0 (z') 
a~ 2 a~· ' 

where we have introduced the new variables 

'Yj' ="'I+ fo/21, z' = VY2 -'Yj' 2 /3. 

(18) 

(19) 

For our proof we must expand the right members 
of Eqs. (18) and (19) in Taylor's series in the dif
ferences 71' - 7J = 7Jo. 

The choice of the variable 71' means that we 
go over into a new coordinate system moving rela
tive to the original system with the speed V = 

tanh 7Jo. In fact, 

v' =tanh 'Y/' = (v + V)/(1 + vV). 

To sufficient accuracy for practical purposes this 
new coordinate system coincides with the center
of-mass system (the relative velocity of these 
systems is given by 

tanh [ { ~~~ -tanh-1 ~~! J <; 0.2, 

since we are considering tubes that are not very 
long, n:::; 3.7). 

It can be seen from Eqs. (18) and (19) that 
olf;/oy is an even function of 71' and ol/Jio7J' is 
an odd function. From this and Eq. (15) one easily 
obtains the relations x' ( - 7]1 , y) = - x' ( 71', y), 
t' ( - 7]1 , y) = t' ( 7]1 , y), from which our assertion 
about the symmetry of the emission of the particles 
in this system follows. The deviation from this 

symmetry in the region described by the solution 
(14) is of the same order asymptotically as the 
third term in the asymptotic expansion of the 
Bessel function, i.e., extremely small at the end 
of the one-dimensional stage. The running waves 
are practically entirely responsible for the dis
turbance of the symmetry. This disturbance is 
also small, since in the region of the running 
waves there are very few particles (of the order 
of one5•6 ). It can be seen from Eqs. (18) and (19) 
that if we confine ourselves to the first term of 
the asymptotic expansion of the Bessel function 
the one-dimensional stage will be described by 
the same formulas as in the case of the collision 
of identical particles (i.e., when t0 = 0 ) . There
fore to this accuracy the angular and energy dis
tributions of the particles will be the same as in 
the collision of identical particles. 
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