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The absorption of infrared electromagnetic waves in metals is considered on the basis of 
Landau's Fermi-liquid theory, 1 with the quantum properties of the electromagnetic field 
taken into account. 

THE present paper is devoted to an investigation 
of the absorption in metals of electromagnetic 
waves in the infrared region of the spectrum from 
the point of view of the Fermi-liquid theory devel
oped by Landau.1 This problem has already been 
considered by Silin. 2* However, in his paper the 
classical transport equation was used to describe 
the Fermi liquid, whereas in the infrared region 
of the spectrum the quantum properties of the 
electromagnetic field (see references 3 to 5) are 
essential for an evaluation of the volume absorp
tion (due to the collisions of the electrons with 
one another and with the lattice phonons). 

If the system is in a state close to equilibrium, 
the energy of the quasi-particles is of the form 

s (p, r, t) = s(o) (p) + os (p, r, t) (1) 

where E(0)(p) is the dispersion law of the quasi
particles when there is no external field, and 

oa(p, r, t) = ~ dp'. <P (p, p') of (p', r, t). 

In the last formula Of ( p, r, t) is the non-equilib
rium correction to the distribution function, 

f (p, r, t) = fo (p) +of (p, r, t), 

f 0 (p) = [ 1 + exp ( e(O) ~+-Eo) rl; 
the function <I? ( p, p') characterizes the interelec
tron correlation. 

In correspondence with (1) it is natural to write 
the "electron" Hamiltonian in an external electro
magnetic field in the form 

where 

if ( 1) = fl(O) ( 1) + 0 H (I)' 

if(o) = s(o)(- i1i.V +-%-A (r, t)), 

A(r ,t) = A (r) ei"'t + A* (r) e-i"'t. 

Using the calculations performed in references 
*The author is deeply grateful to V. P. Silin for making 

his paper available in advance of publication. 
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3 and 5 we easily obtain a quantum transport equa
tion for the system of such electron quasi-particles 
interacting with the lattice vibrations and colliding 
one with another. In the linear approximation this 
equation is of the form 

iwof + v fr ( of-· os :!(~) ) - eE•v ·a~{:) 
h A I e at 0 ) = (Jep+ lee) (of--;- E·v ~(o) 

tw ae (2) 

A , ( e ) - (Kep + Kee) f(;) E· v - oa . 

Here the indices ep and ee denote terms arising 
respectively due to electron-phonon and electron
electron collisions; E ( r) = - ( iw/ c) A ( r) is the 
electrical field strength. jep and jee can be ob
tained from the corresponding classical collision 
operators by substituting for o (a) (the o -function 
that describes the conservation of energy during a 
collision) the average3•5 ! [ o (a + tiw ) + o (a - tiw)] 
(we have denoted by a the difference between the 
energies of the colliding particles before and after 
the collision). Furthermore, 

A A 1t i 1 
Kepos (p) =- rZtt1i.)" Mu1i· C2 j dq · q (os (p + q)- os (p)) Z1i.w 

I q I <q, 

X {[o (a+ 1Lw)- o (a -1Lw)] 

X [- (Nq + 1) fo (p)(1- fo(P + q)) + Nq{o(P+q) 

x(1-f0 (p))l + [o(b+1Lw)-o(b-1Lw)] 

X [- N qf;) (p)( 1 - f 0 (p + q)) 

+ (iv q + 1 H o <P + q) < 1 - to <P > m; 
a= s (p)- s (p + q) -hvq, b = s (p)- s (p + q) + hvq, 

- [ (hv ) J-1 Nq = exp kf -1 

For the sake of simplicity we have here assumed 
that the phonons possess a very simple dispersion 
law: hvq = u I q I, where q is the phonon momen
tum, u the sound velocity in the metal, q0 = k®/u 
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the limiting phonon momentum, ® the Debye tem
perature, M the mass of an atom in the-lattice, 
D. the volume of an elementary cell in the crystal, 
and C a constant of the same order of magnitude 
as the average energy of an electron in the metal. 

Kee os (p) = - 1i ~~1i)6 L; ~ ~ ~ d p' d p1 d p~ 
" 

X [v (I P- P1l)- v (I P- P~ 1)]2 o (p + p'- P1- P~ + 27t1i g) 

X (lh + os'- osl- OS~) 2!w [o (s + s'- 21 

- s~ +ttw)-o(s+s' -s1-s~-1iw)] {f o (p) f o (p') [1-f o (P1 )] 

>< [1-f o (p~)]- f o (P1 )fo (p~) [ 1- fo (p)] [1 - fo (p')]}, 

where the summation extends over all reciprocal 
lattice vectors g. 

'I (I PI) = ~ d r e1 P .rJ'Iicp (I r I ) , 

cp ( I r I ) is the interaction potential of two electrons. 
One can easily verify that in the classical lim

iting case ( nw/kT - o) 

kepos = -J~~1>osafo/as<o>, k.,os = -l~~i>osaf0jas<0>. 

The dependence of the field and the electron 
distribution on the coordinates does not affect the 
volume absorption, i.e., (2) we can drop terms con
taining spatial derivatives in Eq. 2, which can then 
be easily solved by successive approximations 
(since the terms on the right hand side of the 
transport equation are small in the infrared re
gion of the spectrum), 

ofU> (p) = i~- (E•v) a:~~> , ofUn = -:2 (Kep +K •• ) E·V (p) , 

v (p) = v (p) + ~ :~;:)- q, (p,p') v (p'), 

where the integration extends over the surface 
E ( p) = Eo in momentum space. 

The electrical current density is of the form2 

j =- (2!~)3 ~ dp •V (p) f (p) 

~- <~:1iJ"~ dp•v(p) [of(p)- os a:~~>]· 

(3) 

If we substitute the function of the first approxi
mation into this equation we are led to the follow
ing dielectric -constant tensor, 2 

sa~=- (4;re2/w2) (N/m)~~· (rX, ~ = x, y), 

where 
· 2 \dS 

(N/m)a~ = aa~ + aaz az~ /azz, a;k = (27t1i)S J v (~) V; (p) vk (p). 

We have chosen here a Cartesian coordinate sys
tem with a z axis directed out of the metal per-

pendicularly to its boundary. 
The function Of(II) gives the conduction current, 

which can in a natural way be written in the form 

Let the incoming wave. be polarized along one 
of the principal directions of the symmetrical ten
sor ( N/m )a,B· We shall take the x and y axes 
along the principal directions of this tensor. The 
corresponding volume absorption has then the form 

where 
0~2 = (4TCe2jc2) (N/m)aa• 

If the metal surface is oriented in such a way that 
all three axes x, y, and z can be directed along 
principal axes of the aik tensor then 

A<a> = (8;rw2/c3) o!craz· 

The phonon-conductivity tensor a~kp) depends 
in general in rather a complicated fashion on T 
and w. If nw » kT, which is practically always 
satisfied in the near infrared region of the spec
trum, we have* 

aj~P> (w) = -:2 ~· dqq3 coth (2:;) Btk (q), 
0 

B ( ) - !!. 21t C2 
ik q - (2;r'/i)G Mu1i-

X ~ dQq ~ vd~. V1 (p) [V (p + q) -- V (p)]" o(s (p + q)- s0), 

where d!Jq is an element of solid angle in momen
tum space. In the low temperature region ( T « ®) 
it follows from this formula that 

2 ~· T a 
off> (w) -;, = ~ dq · q3B;" (q) + ( -8-) 48qgB~" (0) + .... 

0 

At high temperatures ( T » ®) we have 
q, 

2 T \' cr~~Pl(w) ;~=e2q0 J dqq2Btk(q) 
0 

q, 

+ f :qj dq·q4B;k(q) + .... 
0 

Taking the correlation between electrons into ac
count does therefore in both limiting cases not lead 
to a qualitative change in the temperature depend
ence of the conductivity and only influences the 
numerical values of the coefficients of the corre
sponding powers of T/®. 

A simple calculation shows (cf. reference 5) 
that 

*Here and henceforth we have assumed that the quantities 
ncu, kT, and k8 are small compared to the Fermi energy e:0 • 
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cr~f> (w) = (ejw) 2 [(kT) 2 + (hw/2T:) 2 ] bik , 

where bik are the constant coefficients 

X [ v ( i p -· Pl I) - v ( I p -p' 11 ) 12 

X Vi (p) [V (p) + V(p')+ V (Pl)- V (p~ )lk 

X o (p + p'- P1 - p~ + 27ttig). 

In this way, the absorption due to interelectronic 
collisions changes only in absolute magnitude. How
ever, this fact can apparently be observed experi
mentally, if we compare the results obtained in the 
near infrared region of the spectrum with the re
sults of measurements of the static electrical con
ductivity of the metal. In the latter case the meas
urements must be performed in the very low tern
perature range ( T ~ l0°K) so that collisions with 
the phonons· can be neglected. At such tempera
tures the resistivity of even very pure specimens 
is mainly caused by impurities. Using this fact, 
we can easily show that in our case t.he static 
electrical conductivity is 

aik = e2aj~ jv<en)- e2 (kT) 2bjW / (v<enl)2, 

where the quantities afU and bfU are the same 
respectively as aik and · bik for V ( p) = v ( p); 
for the sake of simplicity we have assumed that 
frequency v(en) of collisions with the impurities 
is isotropic. 

If the interelectronic correlation is essential, 
the quantities afU and bfU are, generally speak
ing, different from aik and bik· The quantities 
aik and bik can be determined from measure
ments in the near-infrared region of the spectrum 
( 1 to 10 p. ): aik from the polarization of the wave, 
reflected from the metal surface, and bik from 
the frequency dependence of the absorption. 

In the case of an isotropic Fermi surface, we 
can easily show that 

(dS", 
V (p) = v (p) (1 + 1 (p)), 1 (p) = .)v (p'J <I> (p, p') cos z, 

where x is the angle between the vectors p and 
p'. For ~ isotropic metal accounting for the 
mutual electron correlation thus reduces to mul
tiplying the earlier expression for the volume 
absorption by a factor [ 1 + y (Po )]2 

where 

A0 = (2'0/c) (v<ep) + v<ee>), o = ( 47tN e2jmc2)-'1•, 

v(ep) and v(ee) are the respective effective col
lision frequencies. According to reference 4 we 
have in the near-infrared region of the spectrum 

5 e:r 
v<ei>>(T,w)=2v~ep) (8)(~) ~ dx·x4 coth ~·, 

0 

where v~ep)( T) is the classical high-temperature 
collision frequency (which is proportional to T). 

The interelectronic collision frequency is of 
the form5 

'l(ee>(T,w) = v~ee)(T) [1 + (1Lwj21tkT) 2 ], 

where v~ee)( T) is the corresponding classical 
collision frequency which is well known to be pro
portional to T2• 

As was noted in reference 5, v~ee)( T) ~ 0 only 
when Umklapp processes are possible. This state
ment is justified also in the case of an arbitrary 
quadratic dispersion law E ( p) = !aikPiPk· It is 
of interest that when there are correlations be
tween the electrons the absorption is, generally 
speaking, different from zero also when there 
are no Umpklapp processes in the case of an 
anisotropic quadratic dispersion law. Indeed, 
from the fact that v ( p) is a linear function of 
the components of the vector p (vi·= aikPk), 
it does not follow that the vector V ( p) must 
possess the same property (see reference 3). 

In conclusion the author expresses his grati
tude to M. I. Kaganov and M. Ia. Azbel' for dis
cussions of the results of the present paper. 
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