is the mass of the α particle, and U is the depth of the potential well.

Let us evaluate the exponent of Eq. (1) with $\tau_{\alpha} = 10^{-22}$ sec and for an energy E equal to the height of the Coulomb barrier $U_{\rm C}$; we shall treat nuclei in which U is known. For C¹² nuclei,⁵ U \approx 11 Mev. For different nuclei the distance l can be chosen about equal to the α -particle diameter. For C¹² we have $l \approx {\rm R} = 1.4 \times 10^{-13} {\rm A}^{1/3}$ cm and $U_{\rm C} \approx 4$ Mev. With these assumptions the exponent for C¹² is 1.2. For silver nuclei, we again set E = U_C and assume that $l({\rm Ag}) = l({\rm C}^{12})$ and U(Ag) \approx U(C¹²); the exponent is then -0.8.

These values of the exponents indicate that if $\tau_{\alpha} = 10^{-22}$ sec, the α -particle spectrum given by (1) should be measurably weakened in the energy region around $E = U_c$.

The situation changes drastically if τ_{α} is actually somewhat less than 10^{-22} sec. A lifetime smaller by a factor of 2 or 2.5 is sufficient to decrease the exponent for C^{12} , for instance, to 0.05 for $E = U_c$. Then for this energy there should be practically no α -particles knocked out, and they should appear in measurable quantities only for $E \ge E_{\alpha} \text{ eff} > U_c$.

Now 10^{-22} sec is the time it takes a 20-Mev nucleon in the nucleus to pass entirely through a C^{12} nucleus. It is very probable that internal α particles can be destroyed in collisions with fast nuclei located in their vicinity when they are formed. There is therefore reason to suppose that τ_{α} is considerably less than 10^{-22} sec. If this is so, experiment should observe almost the complete absence of α particles knocked out in the energy region $U_{\rm C}(A) < E < E_{\alpha \, {\rm eff}}$. An experimental determination of $E_{\alpha \, {\rm eff}}$ could be used to estimate τ_{α} .

It should be noted that this effect is more probably observable for nuclei with A around 12 or 20 than for nuclei with A around 100, since there may be quite a large number of α particles produced in the latter in a shell with low *l*.

Deuteron knockout will be observed if τ_d is less than τ_{α} , for if we consider deuterons with energy $E = U_c$ and set $U \approx 30$ Mev,⁶ $l(d) = l(\alpha)$, and $\tau_d = 10^{-22}$ sec, the exponent in Eq. (1) becomes -0.6.

¹ P. Cüer and J. Combe, J. phys. et radium 16, 29 (1955).

² J. Combe, J. phys. et radium **16**, 445 (1955).

³Cüer, Combe, and Samman, Compt. rend. 240, 75, 1527 (1955).

⁴ J. Combe, Suppl. No. 2, Nuovo cimento **3**, 182 (1956).

⁵ A. Samman, Compt. rend. 242, 2232, 3062 (1956).
⁶ Azhgirei, Vzorov, Zrelov, Meshcheriakov,
Neganov, and Shabudin, J. Exptl. Theoret. Phys.
(U.S.S.R.) 33, 1185 (1957), Soviet Phys. JETP 6,
1911 (1958).

Translated by E. J. Saletan 157

NONLOCAL EFFECTS IN WEAK INTER-ACTIONS OF FERMIONS

S. G. MATINIAN

Physics Institute, Academy of Sciences, Georgian SSR

Submitted to JETP editor May 23, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 791-793 (September, 1958)

KECENTLY Lee and Yang¹ have studied the nonlocal four-Fermion interactions as applied to μ decay. Phenomenologically these interactions can be described using a Lagrangian corresponding to the interaction of pairs of fermions separated by a space-like interval of the order of 10^{-13} to 10^{-14} cm.

The present communication gives a similar treatment of nonlocal effects in μ^- capture by a proton. The neutrino is described by the two-component theory.²⁻⁴

1. The nonlocal Lagrangian for the interaction which gives rise to the $\mu^- + p \rightarrow n + \nu$ reaction is

$$L = \sum_{i} g_{i} \int [\bar{\psi}_{n}(x) O_{i}\psi_{p}(x)] K_{i}(x - x')$$

$$\times [\bar{\psi}_{v}(x') O_{i}\psi_{\mu}(x')] d^{4}x d^{4}x'; \psi_{v} = -\gamma_{b}\psi_{v}.$$
(1)

In this expression the summation is taken over all possible S, V, T, P, and A couplings; the O_i are the appropriate Dirac matrices, and $K_i(x-x')$ is an invariant function of x-x' which accounts for the nonlocal extension of the interaction. Assuming that the space-time extension of $K_i(x-x')$ is smaller than the inverse of the energy momentum transfer involved in the process, we can write

$$K_{i}(x - x') = \delta^{4}(x - x') + \frac{\kappa_{i}}{m^{2}} \frac{\partial^{2}}{\partial x_{\lambda}^{2}} \delta^{4}(x - x') + \dots, \quad (2)$$

(*i* = S, V, T, P, A; $\hbar = c = 1$),

where m is the mass of the μ meson, and $|\kappa_i/m^2|^{1/2}$ is the length characterizing the non-

local effect.* Using Eq. (2) and treating the case of the μ meson and proton at rest, we obtain

$$L = \sum_{i} g_{i} \int [1 + \varkappa_{i} (1 - 2p_{\nu} / m)] [\bar{\psi}_{n} O_{i} \psi_{p}] [\bar{\psi}_{\nu} O_{i} \psi_{\mu}] d^{4}x,$$
(3)

where p_{ν} is the neutrino momentum.

From this we immediately obtain an expression for $1/\tau$, the probability of μ^- capture by hydrogen, and an expression for w(θ), the angular distribution of the neutrons in the capture of polarized μ^- mesons.⁶⁻⁸ These expressions are

$$1/\tau = p_{\nu}^{2\xi}/2\pi^{2}a^{3}, \quad w(\theta) = 1 + \alpha\cos\theta, \quad (4)$$

where a is the Bohr radius of the muonium atom, θ is the angle between the spin of the μ^- meson and the neutron momentum, and

$$\xi = |f_{S} + f_{V}|^{2} + 3|f_{A} + f_{T}|^{2},$$

$$\alpha\xi = -|f_{S} + f_{V}|^{2} + |f_{A} + f_{T}|^{2},$$

$$f_{i} = g_{i}[1 + \kappa_{i}(1 - 2p_{v}/m)].$$
(5)

For the $\mu^- + p \rightarrow n + \tilde{\nu}$ reaction, ξ by ξ' , and $\alpha\xi$ are replaced by $-\alpha'\xi'$.

2. Let us assume the existence of a universal AV interaction.⁹ As is known, it is then possible to choose the coupling constant G for β decay so as to obtain excellent agreement with experiment for the μ meson lifetime.

It is easily shown, however, that nonlocal effects in β decay are quite negligible. If such effects actually exist, they should be observed in μ decay, by a definite change in the coupling constant.

For the universal AV interaction in μ decay, Feynman and Gell-Mann take the expression

$$8^{\prime_{l_{z}}}G\left(\bar{\psi}_{\mu}\gamma_{\lambda}a\psi_{\nu}\right)\left(\bar{\psi}_{\nu}\gamma_{\lambda}a\psi_{e}\right),\tag{6}$$

where $a\psi$ is a two-component wave function, and $G = (1.01 \pm 0.01) 10^{-5}/M^2$ (where M is the mass of the nucleon). The μ -meson lifetime is then given by

$$^{1}/\tau_{\mu} = G^{2}m^{5}/192\pi^{3}$$
.

The nonlocal interaction corresponding to (6), namely

$$8^{1/2}G\left(\bar{\psi}_{\mu}\gamma_{\lambda}a\psi_{\nu}(x)\right)K\left(x-x'\right)\left(\bar{\psi}_{\nu}\gamma_{\lambda}a\psi_{e}(x')\right)$$
(7)

(this corresponds to Lee and Yang's¹ Lagrangian L_{II}) gives

$$1/\tau_{\mu} = (G^2 m^5 / 192 \pi^3) (1 + 3/5 \overline{\zeta_2}),$$

for the μ -meson lifetime, where ζ_2 is a param-

eter characterizing the nonlocal effects, introduced by Lee and Yang.¹ Bearing in mind the experimental uncertainty in the determination of G, we obtain an upper limit for $|\overline{\xi_2}|$ compatible with the universality of G. This is

$$|\zeta_2| \leqslant 0.07. \tag{8}$$

Lee and Yang (using the nonlocal Lagrangian L_{II}) have found the value of $\overline{\xi}_2$ for which the twocomponent theory will give a Michel parameter ρ in agreement with experiment. This value is $\overline{\xi}_2 = -0.21$, which is too large by a factor of three.

It should be noted that if the nonlocal effects (with $\overline{\xi}_2 > 0$) are attributed to the propagation of a heavy virtual particle, its mass M_0 must, according to (8), satisfy the inequality $M_0 \ge \sqrt{14}$ m.

The formulas given in Sec. 1 for the nonlocal interaction in the capture of a μ^- meson by a proton may be useful in establishing the magnitude of κ , which characterizes the length involved in the nonlocal effects, if there exists a universal AV interaction.

Radiative μ^- capture $(\mu^- + p \rightarrow n + \nu + \gamma)$ may in general be helpful in establishing κ_i .

In conclusion, I take this opportunity to express my gratitude to Professor G. R. Khutsishvili for interest in the work and to Iu. G. Mamaladze for discussion of the results.

*We note that if the nonlocal effects are assumed to be caused by virtual π mesons, the capture probabilities obtained fail to agree with experiment.⁵

- ¹T. D. Lee and C. N. Yang, Phys. Rev. 108, 1611 (1957).
 - ² L. Landau, Nuclear Phys. 3, 127 (1957).
 - ³A. Salam, Nuovo cimento **5**, 299 (1957).

⁴ T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).

⁵ J. Lopes, Phys. Rev. **109**, 509 (1958).

⁶B. L. Ioffe, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 308 (1957), Soviet Phys. JETP 6, 240 (1958).

⁷Shapiro, Dolinsky, and Blokhintsev, Nuclear Phys. 4, 273 (1957).

⁸Huang, Yang, and Lee, Phys. Rev. **108**, 1340 (1957).

⁹R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).

Translated by E. J. Saletan 158