that in this case (7) yields $\mathrm{v}=1$, which is the velocity of light in vacuo.

The author expresses his gratitude to Professor D. Ivanenko for discussing the work.
*Here A_{k} is the four-vector whose components are A_{x}, A_{y}, A_{z}, and $i \varphi$, and $A_{k, l}=\partial A_{k} / \partial x_{l}$; we set $c=1$.

[^0]
SELECTION RULES IN REACTIONS INVOLVING POLARIZED PARTICLES

CHOU KUANG-CHAO

Joint Institute for Nuclear Research
Submitted to JETP editor April 23, 1958
J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 783-785
(September, 1958)

S
SIMON and Welton ${ }^{1}$ and Shirokov ${ }^{2}$ have obtained the selection rules for a reaction of the type $a+b \rightarrow c+d$ in the form of relations between the polarization vectors and tensors. They assume that the initial state is not polarized. The present communication gives a derivation of the selection rules for any arbitrarily-polarized initial state. We shall use Shirokov's notation ${ }^{2}$ and assume that all the particles have nonvanishing rest mass.

Consider the statistical tensors of the final state in the $a+b \rightarrow c+d$ reaction,

$$
\begin{equation*}
\rho^{\prime}\left(q_{c}, \tau_{c}, q_{d}, \tau_{d} ; g_{c} g_{a}^{-1}\right) \tag{1}
\end{equation*}
$$

which depend essentially on the parameters of the rotation $\mathrm{g}_{\mathrm{c}} \mathrm{g}_{\mathrm{a}}^{-1}$ which carries the $\mathrm{z}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}, \mathrm{x}_{\mathrm{a}}$ coordinate system into the z_{c}, y_{c}, x_{c} coordinate system. The first of these systems is associated with the initial state, the z_{a} axis being parallel to n_{a}, and the y_{a} axis being perpendicular to
the production plane of particle a. The second of these systems has z_{c} parallel to n_{c}, and y_{c} in the direction of the cross product $n_{a} \times n_{c}$. Here n_{i} is the unit vector along the direction of motion of particle i, and q is the rank of the statistical tensors. The spin indices τ are defined in terms of these particular coordinate systems. With this choice of coordinate systems, the Euler angles for the rotation $\mathrm{g}_{\mathrm{c}} \mathrm{ga}^{-1}$ are $\left\{-\pi, \theta_{\mathrm{c}}, \pi-\varphi_{\mathrm{c}}\right\}$, where θ_{c} and φ_{c} are the spherical angles of the unit vector n_{c} in the $\mathrm{z}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}, \mathrm{x}_{\mathrm{a}}$ coordinate system (see Shirokov ${ }^{2}$).

Let the state obtained from the initial one by space reflection be characterized by the statistical tensor $\rho_{\mathrm{I}}^{\prime}$. Under the reflection the z_{a} and z_{c} axes, chosen along the momenta of particles a and c , change direction, while the y_{a} and y_{c} axes remain invariant. The spherical angles θ_{cI} and φ_{cI} of the reflected $-\mathrm{n}_{\mathrm{c}}$ vector in the reflected $\left\{z_{a}, y_{a}, x_{a}\right\}_{I}$ coordinate system are

$$
\begin{equation*}
\vartheta_{c I}=\vartheta_{c}, \quad \varphi_{c l}=-\varphi_{c} . \tag{2}
\end{equation*}
$$

The spin operators remain invariant under reflection. If θ_{c} and φ_{c} are replaced by $\theta_{c I}$ and $\varphi_{c I}$ in Eq. (1), we obtain the $\rho_{\mathrm{I}}^{\prime}$ statistical tensors from ρ^{\prime}; the spin indices τ of the new $\rho_{\mathrm{I}}^{\prime}$ tensors must be quantized with respect to the old nonreflected z_{c}, y_{c}, x_{c} system. Since the reflected $\left\{z_{c}, y_{c}, x_{c}\right\}_{I}$ coordinate system differs from the initial one only by rotation through an angle π about the y_{c} axis, the transformation properties of the statistical tensors ${ }^{2}$ lead to the equations

$$
\begin{gather*}
\rho_{1}^{\prime}\left(q_{c}, \tau_{c}, q_{d}, \tau_{d} ; \vartheta_{c},-\varphi_{c}\right)=\sum_{\tau_{c}^{\prime} \tau_{d}^{\prime}} D_{\tau_{c} \tau_{c}}^{q_{c}}(0, \pi, 0) D_{\tau_{d} \tau_{d}^{\prime}}^{q_{d}}(0, \pi, 0) \\
\times \rho^{\prime}\left(q_{c}, \tau_{c}^{\prime}, q_{d} ; \tau_{d}^{\prime} ; \vartheta_{c}, \varphi_{c}\right) \tag{3}
\end{gather*}
$$

Here the spin indices τ are quantized with respect to their own proper coordinate systems. Since $\mathrm{D}_{\tau \tau^{\prime}}(0, \pi, 0)=(-1)^{\mathrm{q}+\tau} \delta_{\tau,-\tau^{\prime}}$ (see Shirokov 2 and Gel'fand and Shapiro ${ }^{3}$), Eq. (3) leads to

$$
\begin{gather*}
\rho_{1}^{\prime}\left(q_{c}, \tau_{c}, q_{d}, \tau_{d} ; \vartheta_{c},-\varphi_{c}\right) \\
=(-1)^{q_{c}+\tau_{c}+q_{d}+\tau_{\rho^{\prime}} \rho^{\prime}\left(q_{c},-\tau_{c}, q_{d},-\tau_{d} ; \vartheta_{c}, \varphi_{c}\right) .} \tag{4}
\end{gather*}
$$

The law of parity conservation may be stated in the following way: if the initial statistical tensors ρ are replaced by the reflected tensors ρ_{I}, the tensors $\rho^{\prime \prime}$ of the products of the reaction are the tensors $\rho_{\mathrm{I}}^{\prime}$ which are obtained from ρ^{\prime} by Eq. (4). In other words, if the statistical tensors ρ^{\prime} are written $\rho^{\prime}=F(\rho)$, then

$$
\begin{equation*}
\rho_{I}^{\prime}=F\left(\rho_{I}\right) . \tag{5}
\end{equation*}
$$

Equations (4) and (5) together give the most general selection rules in the form of a relation between the statistical tensors.

Let us now consider some simple examples. If the initial state of the $a+b \rightarrow c+d$ reaction is unpolarized, then $\rho=\rho_{\mathrm{I}}$. Then according to (4) and (5) $\rho^{\prime}=\rho_{\mathrm{I}}^{\prime}$, or

$$
\begin{gather*}
\rho^{\prime}\left(q_{c}, \tau_{c}, q_{d}, \tau_{d} ; \vartheta_{c}\right) \\
=(-1)^{q_{c}+\tau_{c}+q_{d}+\tau_{d} \rho^{\prime}\left(q_{c},-\tau_{c}, q_{d},-\tau_{d} ; \vartheta_{c}\right)} . \tag{6}
\end{gather*}
$$

In our case the ρ^{\prime} tensors do not depend on φ_{c} Equations (6) are the same selection rules as Simon and Welton obtained for $q=1$ and the same as those obtained by Shirokov.*

Let us now consider a cascade of the form $a+b \rightarrow c+d$ followed by $c+e \rightarrow f+g$ (the incident beam a, the target b, and e are unpolarized). According to (6), $\rho=\rho_{\mathrm{I}}$ in the initial state of the second reaction, and we obtain

$$
\begin{gather*}
\rho^{\prime}\left(q_{i}, \tau_{f}, q_{g}, \tau_{g} ; \vartheta_{f},-\varphi_{f}\right) \\
=(-1)^{q_{f}+\tau_{f}+q_{g}+\tau_{g} \rho^{\prime}\left(q_{f},-\tau_{f}, q_{g},-\tau_{g} ; \vartheta_{f}, \varphi_{f}\right)} \tag{7}
\end{gather*}
$$

For the special case in which $q_{f}=q_{g}=0$, Eq. (7) becomes

$$
\begin{equation*}
\sigma\left(\vartheta_{f},-\varphi_{f}\right)=\sigma\left(\vartheta_{f}, \varphi_{f}\right) . \tag{8}
\end{equation*}
$$

Since φ_{f} is the azimuth angle of n_{f} in the coordinate system in which the y_{c} axis is directed along $\mathrm{n}_{\mathrm{a}} \times \mathrm{n}_{\mathrm{c}}$, Eq. (8) states the well known fact that the angular distribution is symmetric about the production plane of the incident particle in the second reaction of the cascade. Equations (7) may be regarded as a generalization of this àssertion.

In conclusion, we remark that our selection rules can also be obtained by Shirokov's method, but the present approach is simpler.

The author expresses his gratitude to Professors M. A. Markov, M. I. Shirokov, and L. G. Zastavenko for interest and discussion of the results.

[^1][^2]Translated by E. J. Saletan 154

ON THE QUESTION OF THE UNIQUENESS OF PHASE ANALYSIS

L. G. ZASTAVENKO

Joint Institute for Nuclear Research
Submitted to JETP editor May 5, 1958
J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 785-787
(September, 1958)

MINAMI ${ }^{1}$ has given a transformation of the scattering matrix which leaves the differential cross section invariant for the case in which the colliding particles have spins 0 and $\frac{1}{2}$. The present note gives an analog of this transformation for all spins s_{1} and s_{2} of the colliding particles.

We express the scattering matrix in terms of the functions $s_{1} s_{2} \mathrm{Y}_{\alpha_{1} \alpha_{2}}^{\mathrm{j}}$ (n) describing the state of a system of two particles whose total angular momentum is j. The component of j and the components of the spins of the two particles along the direction given by n are M, α_{1}, and α_{2}, respectively. In terms of these functions, the scattering matrix is ${ }^{2,3}$

$$
\begin{gathered}
M\left(\mathbf{n}_{f}, \mathbf{n}\right)=\sum_{\alpha j M} Y_{\alpha_{1} \alpha_{2}}^{j M}\left(\mathbf{n}_{f}\right)\left[Y_{\alpha^{\prime} \alpha^{\prime}(2)}^{j M}\left(\mathbf{n}_{i}\right)\right]^{*} A_{\alpha_{1} \alpha_{2} \alpha^{\prime} \alpha^{\prime}{ }^{\prime}}^{j} \\
s_{1} s_{2} Y_{\alpha_{1} \alpha_{2}}^{j M}(\mathrm{n})=\sum_{s, l}\left\langle s_{1} \alpha_{1} s_{2} \alpha_{2} \mid s_{1} s_{2} s a\right\rangle \\
\times\langle s a l 0 \mid s l j a\rangle \sqrt{\frac{2 l+1}{2 j+1}} s_{1} s_{2} Y_{s l}^{j M}(\mathbf{n})
\end{gathered}
$$

Let $S(n)$ be a rotation that carries the vector n into the third axis, and consider the functions $\varphi_{\sigma_{1} \sigma_{2}}(\mathrm{n})$ whose components are

$$
\left[\varphi_{\sigma_{1} \sigma_{2}}(\mathbf{n})\right]_{\alpha_{1} \alpha_{2}}=D_{\alpha_{1} \sigma_{1}}^{s_{1}}\left(S^{-1}(\mathbf{n})\right) D_{\alpha_{2} \sigma_{2}}^{s_{2}}\left(S^{-1}(\mathbf{n})\right)
$$

where $D_{m_{1} m_{2}}^{j}(S)$ are the matrix elements of an irreducible representation of the three-dimensional rotation group. ${ }^{4}$ These functions describe a state in which the first and second particles have spins whose components are σ_{1} and σ_{2}, respectively, along n .

The functions $\mathrm{Y}_{\alpha_{1} \alpha_{2}}^{\mathrm{jM}}(\mathrm{n})$ satisfy the relation

$$
Y_{\alpha_{1} \alpha_{2}}^{j M}(\mathbf{n})=\varphi_{\alpha_{1} \alpha_{2}}(\mathbf{n}) \sqrt{\frac{2 j+1}{4 \pi}} D_{\alpha_{1}+\alpha_{2}, M}^{j}(S(\mathbf{n})),
$$

so that the matrix element for the transition from the state $\varphi_{\alpha_{1}^{\prime} \alpha_{2}^{\prime}}\left(\mathrm{n}_{\mathrm{i}}\right)$ to the state $\varphi_{\alpha_{1} \alpha_{2}}\left(\mathrm{n}_{\mathrm{f}}\right)$ is*

$$
\begin{gather*}
\left(\alpha_{1} \alpha_{2}|M| \alpha_{1}^{\prime} \alpha_{2}^{\prime}\right)=\sum_{j} A_{\sigma_{1} \alpha_{2} \alpha_{1} \alpha_{2}^{\prime}}^{j} \\
\left.\times \sqrt{\frac{2 j+1}{4 \pi}} D_{\alpha_{1}+\alpha_{2}, \alpha_{1}^{\prime}+\alpha_{2}^{\prime}}^{j} S\left(\mathbf{n}_{f}\right) S^{-1}\left(\mathbf{n}_{i}\right)\right) \tag{1}
\end{gather*}
$$

[^0]: ${ }^{1}$ A Sommerfeld, Ann. Physik 44, 177 (1914); L. Brillouin, Ann. Physik 44, 203 (1914).
 ${ }^{2}$ M. S. Svirskii, Вестник МГУ (Bulletin Moscow State Univ.) 3, 43 (1951); D. I. Blokhintsev, Dokl. Akad. Nauk SSSR 82, 553 (1952); D. I. Blokhintsev and V. V. Orlov, J. Exptl. Theoret. Phys. (U.S.S.R.) 25, 513 (1953); V. I. Skobelkin, J. Exptl. Theoret. Phys. (U.S.S.R.) 27, 689 (1954); L. G. Iakovlev, J. Exptl. Theoret. Phys. (U.S.S.R.) 28, 246 (1955), Soviet Phys. JETP 1, 181 (1955).

 Translated by E. J. Saletan
 153

[^1]: *We remark that the first and second selection rules given by Shirokov are actually two different ways of stating the same rule.

[^2]: ${ }^{1}$ A. Simon and T. A. Welton, Phys. Rev. 90, 1036 (1953).
 ${ }^{2}$ M. I. Shirokov, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 1022 (1957), Soviet Phys. JETP 5, 835 (1952).
 ${ }^{3}$ M. I. Gel'fand and Z. Ia. Shapiro, Uspekhi Mat. Nauk 7, 3 (1952).

