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Quasi-unidimensional relativistic stationary flow of a gas is considered in a medium with 
infinite conductivity and with a magnetic field perpendicular to the velocity. Particular 
attention is devoted to cylindrically symmetric flow. We calculate the total momentum 
which an expanding gas can acquire per unit time (equal to the "reactive" force), both 
with a field and without it. This calculation is performed, in particular, for escape of 
an ultrarelativistic gas. 

CoNSIDER the quasi-unidimensional stationary 
flow of a gas in a magnetic field, assuming the con
ductivity to be infinite. 

By quasi-unidimensional flow we mean a flow 
with a smoothly varying cross section containing 
given flow lines. In particular, we shall treat the 
cylindrically symmetric case. 

The basic equations, assuming adiabatic flow, 
are1 

w*l e = w~ = const; (1) 

!:lsa 1 ev = !1M = const, (2) 

e = (1- a2 1 c2)'1•; w· = pV + pVc2 + [LH 2V 1 4", 

where a is the velocity, wti is the rest heat con
tent, p is the pressure, V is the specific volume, 
p is the density of the medium (including the mi
croscopic energy), H is the magnetic field strength 
(we consider H to be perpendicular to a) which, 
for infinite conductivity, is related to the specific 
volume by the expression 

HV = b = const; (3) 

and ~M is the amount of mass crossing the area 
~s per unit time. (The area ~s is a function of 
r.) 

For cylindrical symmetry, we have 

s=2"r; M=27trai6V; HV=br. (4) 

If there is no field, we can assume point symmetry, 
and then 

In general, 

!1M I !:ls = f (r). (5) 

The energy equation for adiabatic flow gives u = 
const (where u is the entropy), or isoentropic 
flow. 

Let us now write Eqs. (1) and (2) in the form 

!1M= a!:ls 1 ev, 
where b0 = J,.tb2 I 411'. 

If the equation of state of a gas 

pV= RT, (7) 

(where T is the temperature) and the constant
entropy equation 

pVk =A= const, 

are satisfied, then 

(8) 

w = pV + r-Yc2 = txc2 + kpV l(k -I), (9) 

where 

IX= paVa- PaVa I (k- I) C2 ; w· = w + bo I v. 

For an ordinary gas a = 1, while for an ultrarela
tivistic gas a = 0, and 

pV = RT = (k-l)pVc2 . (10) 

The first equation of (6) then becomes 

2 , _k_ AV1-k+ .!?_r.__ _ r1 
!XC T k - 1 V - Wo ' (11) 

thus relating V and a. Further, from the second 
equation of (6) we have 

(a IV) !:ls = O!:lAl. (12) 

Relations (11) and (12) lead to equations which can 
be used to find a and V as functions of r. These 
are 

(13) 

( • kA 1-k b0 )"[ V2 (M1)2 ] 2 
!XC" + k- 1 V + V I + c" (D.s)' = Wo. (14) 
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In the cylindrically symmetric case t:..M/ t:..s = 
M/27Tr. Using this, it is a simple matter to find 
a ( r) and V ( r) both for an ordinary gas with 
high energy and for an ultrarelativistic gas. In 
the classical limit the cylindrically symmetric 
flow becomes the same as that given by ordinary 
gas dynamics. 

Since t:..sa/ve = t:..M = const, we have 

d~s dV da 
- 7!:5 = - V + a (1 - a2fo2 ) • 

Since 

dw• I w· =- (a2 1 c2) da I fJ 2a, 

Eq. (15) becomes 

d~s da dV dw• c2 dV 
-z;:s = - £ili2 + -v- = w-- -a.• + --v . 

We also have 

- ( c2 1 w •2) dw· I w· = dV I V, 

where 

(15) 

(16) 

(17) 

(18) 

(19) 

and w* is the magnetohydrodynamic velocity of 
sound. Comparing (16), (17), and (18), we arrive 
at 

d~s _(I a') da 
-Ts- -~, a(1-a2 ;c")" (20) 

At the minimum (critical) cross section, when 
Ms = 0, we have w* =±a, indicating critical 
flow in which the velocity of the medium is equal 
to the velocity of sound. 

In the more general case, as in classical gas 
flow, one can have motion with a~ w* if Ms ~ 0, 
or motion with a =s w* if Ms =s 0. 

Let us now calculate the momentum that the 
flow can attain in escaping into a rarefied volume 
(this is the case with a ~ w* and Ms ~ 0 ) . 

The time rate of change of momentum (or the 
reactive force acting on an area t:..s) is given by 

!:iF= !:ii =!:is [c~:, (P + pc2 + ~:·) + p + !L~2 ]. (21) 

(In the cylindrical case the total momentum in all 
directions over a circle vanishes.) Let us write 
(21) in a different form. Since 

(p + pc2 + {LH2 1 47t) I e = w· I ev = w~ I v; a!:is I ev = !:iM, 

we have 

!:is (p + pc2 + {LH2 I 47t) (a I c262) = w~al:iM I c2 ; 

further 
(p + !LH' I 81t) !:is = (l:iM6 I a) (pV + bo I 2V), 

so that . 
• [wo 6 · b0 )] !:iF = al:iM C2 + aa \PV + W , (22) 

or 

• [ kAV~-h. b0 6 ( 1-h. b0 )] 
!:iF= l:iMa ~+ (k-i)c' + c2Vo + aa AV +ziT . (23) 

For the ordinary case we have 0! = 1, and since 
PoVo = 1, we may write 

!:iF (24) 

• [ kAV~-h. b0V;;-1 6 ( I-h. b0 ']. 
=aM a I+ (k _ 1) c' + -----c2 + £!2- AV (a) + 2v (a)) , 

as p- 0, we have V- oo, pV = 0, and 

where 
aco = c {1- [I + kAv~-h. I C2 (k- I)+ boVo1 I c2P}''•; (26) 

Therefore 

!:iF co= l:iMc [(1 + kAV~-n. I (k- I) c2 + b0 v-~1 c2) 2 - !]'1•. 
(27) 

In the classical limit we have 

!:iF= l:iMa [1 + a-2 (AV1-n. + b0 I2V)]; . 

a= [k2~1 (p~-1- pk-1) + 2bo (Po-p) J". 
As V- oo, 

(28) 

(29) 

!:iF co= l:iMaco = l:iM [2kpol(k- 1) Po+ 2boPoJ'1'. (30) 

In the ultrarelativistic case with 0! = 0 we have 
Po = ( k - 1 ) p0c2 and 

!:iF = l:iMa [kpoVo + bo I c2Vo + ea-2 (A VI-h. + bo I 2V)]. (31) 

From Eq. (11) we find that for an ultrarelativistic 
gas V and a are related by 

k AV1-R. bo o • e [k 2 V + bn J k- 1 + -v-- = uWo = c Po o Yo . (32) 

this gives 

AV1-" = k; 1 [ e ( kc2p0V0 + t:)--~ ] , 
so that 

aF 
(33) 

= l:iMa [(I + (k -- I) ~:) (poVo + k:.~o) + 2 ; k a'~~a)] · 
Equation (33) is more convenient to write in the 
form 

!:iF (34) 

• [( a (k c ) ( V b0 ) 2 - k b06 j 
= l:iMc c + - I) a Po 0 +. kc'Vo + --rk caV (a) • 

As V - ad and a - c, 
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(35) 
• 2 

= AMc (kpoVo + (J.HoVof 4r:c2). 

If there is no field ( b0 = 0 ) , 

Af=AMc[a/c+(k-l)cja]poVo. (36) 

In the limit, l:a.Foo = kt:.Mcp0V0• If there is no gas 
(A = 0 and p = 0 ) but there exists only a field, 
we write (22) in the form 

. ( i!-H~ a f!.b'6 c \ 
AF = AMc 4--. - + -8 'V - 1 • r:p0c c rrc a ; 

(37) 

Since ( 1 - a2/ c2 ) 1/ 2 = w*/w6 = H2V /H~V0 = H/Ho, 
we find that a/c = ( 1- H2/H~)il2 , so that (37) be
comes 

iJH~flM 1 - H2 I 2H~ 
AF = -4-,- ')'' .. 

rrc Po (1- H' 1 H0 1' 
(38) 

As p- 0, however, with a= c, these relations 
have meaning only if V - oo and H = 0; then 

2 • 2 ·; • F oo = J.LH0t:.M/ 47Tc0 = t:.E c, where t:.E = 
( J.LH~ / 41Tp0) l:a.M is the mean energy flux. 

The expressions given in the present paper can 
be used in studying the interaction of bodies emit
ting either streams of gas or fields. 

1 K. P. Staniukovich, Dokl. Akad. Nauk SSSR 119, 
251 (1958), Soviet Phys. "Doklady" 3, 299 (1958). 
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