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The radiation spectrum of a current-conducting jet which moves in a circle in a homogeneous 
space is considered. Asymptotic expressions for Bessel and Neumann functions, which yield 
good approximations even at relatively low values of the indices and arguments, are used to 
study the radiation spectrum and the transverse forces exerted by the ferrite in cases of 
non-uniform media. 

1. INTRODUCTION. METHOD OF CALCULATION 

THE interaction between current-conducting 
jets, moving with high velocities, and a ferrite 
was first considered by Morozov. 1 The ramifica
tions of this problem were noted by this author: 
in studying earlier cases of practical importance 
the interaction could be analyzed in a quasi
stationary approximation. It now becomes ap
parent, however, that there are a number of 
physical problems in which one deals with ob
jects which are not true currents or charges, 
and which move as a unit with velocities greater 
than the phase velocity of light in many materials 
(high-current accelerators, new methods of gener
ating radio waves). In reference 1 the analysis was 
made assuming rectilinear motion of the jet. In 
this case the •trajectories" are planes parallel to 
one of the Cartesian coordinate planes. The en
tire space was assumed to be made up of layers 
characterized by different values of E and J.L , 
all parallel to the same coordinate plane. 

However, great interest attaches to the case in 
which the jet moves in a circle. In this case the 
•trajectories" are cylindrical surfaces and the 
space is divided into cylindrical layers character
ized by different values of E and J.L• which are 
coaxial with the trajectory cylinders (this situa
tion is considered in greater detail in Sec. 3). An 
investigation of this configuration is of interest in 
its own right from the point of view of general 
radiation theory because at certain critical veloc
ities the total radiation loss is determined by 
the Cerenkov effect as well as the finite radius 
of curvature of the trajectory. 

In the present paper we consider several cases 

in which a charged current-conducting jet moving 
in a circle interacts with a ferrite medium or 
media. We assume that the different parts of 
space are media characterized by different E 

and J.L• We assume that a charged current-con
ducting jet moves in the aximuthal direction in a 
circle of radius a with a velocity v(O, v, Vz) in 
one of these media; it is also assumed that the 
jet is infinitesimally thin and unbounded in the 
z direction and that it traces out a cylinder of 
radius a in its motion (cf. Fig. 1). We denote the 
strength of the current which flows in the jet by 
10; the linear charge density is denoted by p. The 
current components are given by the following ex
pressions: 

. . 8 (r- a) • ( 
]r = 0; 1~ = pv--,- o (j)- w0t); 

. I 8 (r- a) , ( t) ( v \ 
}z = --,-u tp-Wo Wo =a)' 

It can be shown that the electromagnetic field 
described by Maxwell equations can be broken 

(1) 

up into two independent fields: one of these is 
determined by the total current I = 10 + p V z and 
the other by the charge p. As in reference 1, we 
call the first the !-field and the second the p-field. 

Substituting Eq. (1) in Maxwell equations and 
solving the system of homogeneous equations with 
appropriate boundary conditions (cf., e.g., refer
ence 2) we find the field components and the forces 
which act on the jet in several particular cases. 

In order to obtain definite results we assume 
that E(W) and J.L(w) are real in all media; this 
assumption is not entirely justified since it is 
necessary to take account of absorption in con
sidering dispersive media. 
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FIG. 1 

2. MOTION IN HOMOGENEOUS SPACE 

We first consider the motion of a charged cur
rent filament (infinite along the z axis) in a 
medium characterized by E and 1-L which fills 
the entire space (Fig. 1). Carrying out the cal
culation in accordance with the scheme given 
above, we find the field components and the radi
ation losses for the !-field and the p-field; the 
latter is taken as the scalar product of the force 
which acts on the jet and its velocity, with sign 
reversed: 3 

00 "' 

w = - v.F = w' + wp = ~ w~ + ~ w~ , 
n=l n=l 

where 

It is easy to show that -v•F =au/at where 
au/at is the energy flux computed from the 
Poynting theorem. A discussion of this result, 
which is not completely obvious for the jet case, 
is given in reference 1. 

We now consider the motion of the jet in empty 
space (E = 1-L = 1) • In the nonrelativistic case it is 
easily shown that the maximum radiation of the 
I -field and the p -field occurs at the first harmonic 
(dipole radiation). In the relativistic case, which 
is of greatest interest, w~ and w& are expressed 
in terms of Bessel functions Jn(x) and their de
rivatives for which n - x (n -x) /n = g ; g « 1). 
Thus, to study the radiation spectra we introduce 
the asymptotic expansion for Jn(x) and J'(x); 
these can give good approximations even at small 
values of the indices and arguments (n- x). With
out considering this procedure in detail, we may 
note that the method given in reference 4 gives a 
comparatively simple way of finding the following 
asymptotic expressions: 

Jn(X)=! "(_23(K, 1,[-i·(2~)'i•]e-", 

J~ (x) = 7t i3 K•/, [ -~ (2~)'1•] e-a' ( 4) 

n-x B1 Bo + . 
~ = --n- 4: 1; cr = 2r! - 12n" •.. , 

where K is the MacDonald function and Bi is the 
Bernuolli number (cf. reference 5). The asymp
totic expressions for the Neumann functions are 
given in this same paper; these forms will be re
quired for analysis of other particular cases and 
are better than the asymptotic expressions given 
by Fock.& 

Substituting the expressions for Jn(x) and 
J'n(x) from Eq. (4) in Eqs. ( 2) and (3) we ob
tain the following expressions for the radiation of 
the I -field and the .p-field: 

WP = ~ 2P"n[33c (me•)• K2 [!!:_ (mc•)aJ e-2a, (5) 
.LJ 37t a E '/, 3 E 

It is apparent from Eqs. (5) and (6) that in the 
relativistic case there is a difference in the spec
tral energy distribution for the I -field and the 
p-field. From Eq. (5) it follows that the radiation 
intensity of the n-th harmonic of the p-field is 
inversely proportional to n% when n « 3( F..hnc2) 3 

and falls off exponentially when n » 3(E/mc2)3, 
i.e., the strongest radiation in the relativistic case 
is at the first harmonic. We may note that in the 
relativistic case the total radiation intensity of the 
p -field is independent of the energy of the jet. On 
the other hand, the radiation intensity of the 
I -field, as is apparent from Eq. (6) , is directly 
proportional to n113 when n « 3(F/mc2)3, is a 
maximum when n = 3(F..hnc2) 3 and falls off ex
ponentially when n » 3(E/mc2)3. For the high 
harmonics n >> 1 (in the present case these 
harmonics make the main contribution to the total 
radiation energy) and we may assume that the 
radiation frequency w is continuous. Thus, the 
summation over n is replaced by integration; 
using the value of the integral computed by 
Klepikov: 

f • 2"-a (IJ. + v + P) ((1.- v+ P l ~ Kv (x) Kp (x) xtL-Idx = r ((1.) . r 2 r 2 

0 - (7) 

xrc+;--P)r((J.-;-p) (Refl.>IRe(v+p)i), 

we find the total radiation intensity per unit length 
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of a jet characterized by a current I : 

w' = (2 I V3) (/ 2~lac) (Eimc2)4 • (8) 

It follows from Eq. (8) that the radiation of the 
I -field of a jet and the radiation of a relativistic 
electron which moves in a circle are strong func
tions of energy. Apparently, this is explained by 
the different directivity of the radiation of the 
!-field and the p-field. A similar result has been 
obtained by Morozovt for a current filament which 
oscillates in a direction perpendicular to its length. 

3. INHOMOGENEOUS SPACES 

We now consider the case in which the space is 
filled with different media. As has already been 
noted, the portions of space filled by media with 
€ and iJ. form coaxial cylindrical surfaces of 
different radii ( cf. Fig. 2) • In one of the media a 
charged current-conducting jet, infinite along the 
z axis, describes a circle of radius a and traces 
out a coaxial cylinder of radius a in its motion. 
As before we denote the total current of the jet by 
I and the linear density by p. 

We consider three cases below: 
( 1) a jet which moves in a circle of radius a 

inside a cylinder of radius at (a < at) character
ized by Et and iJ.t• surrounded by a medium 
described by € 2 and tJ. 2 (Fig. 2, I); 

(2) a jet which moves in a circle of radius a 
in a medium described by € 2 and iJ.2 around a 
ferrite cylinder of radius at characterized by 
€ t and tJ.t ( at < a) (Fig. 2, II) ; 

(3) a jet which moves in a circle of radius a 
inside a curved channel in a medium character
ized by € 2 and tJ. 2, formed by cylindrical sur
faces of radii at and a2 (at < a < ~) ; the 
channel is surrounded by media described by 
€ t, a and iJ.t, 3 (Fig. 2, III) • 

If we neglect absorption the radiation intensity 
of the P-field is given by the following: 

<X> 

W P,. = ~' Wnp P ( • 1 2 3) L.J 1ln, i t = , . , , 

P X 4 
1ln, 1 = -2--2 2 k k 2 ; 

"'1 + ~1 7t 1 2 a1 

1 [ "'1 N~ (kp)- ~1 J~ (k5 a)]2 
rpP = ------;:------::----

n, 2 J'; (ks a) "'~ + ~~ 

<X1 = J n (k1 a1) J~ (k2 a1)- x/n (k2 a1) J~ (k1 a1); 

~1 = J n (k1 a1) N~ (k2 a1)- xN n (k2 a1) J~ (k1 a1); 

Y1 = N n (k1 a1) J~ (k2 a1)- xJ n (k2 a1) N~ (k1 a1); (9) 

o1 = N n (k1a1) N~ (k2a1)- X N n (kza1) N~ (k1 a1); 

X = V Ez[LJ/ E1[L2; k1,2 = V E1,2 !L1,2k; ks = V Es [Ls k; 

A = <X1 ~2- ~1 a2; B = a1ll2- ~I "(2; 

a 2 , {3 2, 'Y2 and c52 are obtained by substituting 
k 1 - k3 ; a 1- ~ in the expressions for a 1 , {31 , 

'Yt and 81 ; the subscript "s" on €, iJ.• and k 
indicate values for the media in which the jet 
moves; the subscript "i" refers to the particu
lar case considered in this section. 

In a similar way we obtain expressions for 
the radial forces exerted on the jet by the 
p -fields (below we call these transverse 
forces): 

<X> 

F~.t = ~ F~.nf~. t (i = 1' 2, 3), 
n=I 

P J~ (ks a) "'' y, + ~' ih 
f n,1 = - ~(k ) 2 + ~2 

n sa ocl 1 

t~, 2 

f~. 3 = _ {[1X1N n (k5a),- ~ 1Jn (k5 a)J 

Jn (k5 a) Nn (k5 a) (A"+ B2 ) 

( 10) 

::< [A(~ 2J~ (k5 a) - "'z N~ (k5 a)) + B (llzJ~ (k5 a)- y 2 N~ (k5 a))] + I}. 
The expressions for the radiation intensities 

and transverse forces of the I -field can be ob
tained from Eqs. (9) and ( 10) if the following sub
stitutions are made: 

pv-->- I; ( 1 - 1 I s5 [Ls ~2)-->- 1, 

.Tn(X)->-J~(x); Nn(x)->N~(x). 

We may note that these formulas apply at any 
velocity. It is easy to show that when v- 0, 
wf1- 0 while F~l becomes the expression which 
describes the interaction between a charged fila
ment or a conductor and a ferrite, which is well 
known in electrostatics and magnetostatics. Thus, 
in case II (Fig. 2, II) when v -0, we obtain from 
Eq. (9) the force on a unit length of the charged 
filament in a medium characterized by € 2 exerted 
by a dielectric cylinder characterized by € t: 

F~. 2 = 2p2 (s 2 - s1) a~/ s2 (s1 + s2) a (a2 - a~), (11) 

from Eq. ( 10) we find the force which exerted on a 
conductor in a medium characterized by iJ. 2 by a 
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cylinder characterized by a magnetic permeability 
J..l.t: 

(cf. for example, reference 8) • 

More interesting results are obtained for jets 
which move with relativistic velocities. 

We consider jets which move in empty space 
€ = J..l. = 1) close to dense ferrite media (cases I 

s s l h' h . and II) , or inside a circular channe w 1c IS 

narrow compared with the radius of curvature, 
(case III) with velocities close to the velocity of 
light in vacuo {I ( a 1, 2 - a) /a I = ~ a/a; ( ~ a/a) 2 

« 1}. The radiation intensity and the transverse 
currents are given by Bessel functions Jn(x) and 
Neumann functions Nn( x) and their derivatives 
for which the indices and arguments are approxi
mately the same (x - n) or for which the argu
ments are considerably greater than the indices. 
The asymptotic formulas, which yield good ap
proximations for these values of the indices and 
arguments, can be used to investigate the basic 
features of these cases (the asymptotic formulas 
for Jn(x) and Nn(x) when x - n are given in 
references 5 and 6) • We consider certain of 
these cases. 

( a) If the jet moves in the azimuthal direction 
inside an empty circular channel which is narrow 
compared with the radius of curvature ( cf. Fig. 2, 
III) and if E 1 = E3 =E; J..l.t= J.La=J.L, 

(13) 

2a {( 1 ) ( 1 ) . [ 2n (2~a )''·]·}-I (/)~. a = £Z;- " + x - "- x Sill 3 ,-a- ' 

( I. ) 4~a 
if 2~a <g;;a' 

(14) 

FIG. 2 

where we have introduced the notation K = 
..; 2.€ ~ a/aJ..I. and ;\ is the wave length associated 
with the radiation of the jet. 

Whence it follows that if the conditions in ( 13) 
are fulfilled, the expression for W ~ 3 coincides 
with the expression for the radiation' intensity of 
the n-th harmonic of the p-field of a jet which 
moves in a homogeneous space filled by a medium 
which surrounds the channel. The condition in 
(13) is analogous to the Ginzburg-Frank inequality9 

for a jet that moves in vacuum inside a circular 
region of space which is surrounded by a ferrite. 
It is easy to show that when (14) is satisfied the 
energy spectrum (maxima and minima on the 
curve which characterizes the spectral distribu
tion of radiation losses) is such that the total 
intensity of the radiation beyond a point which 
corresponds to the frequency interval ~ w = 
(31!' v /a) ( a/2 ~ a)s/2 is equal to the radiation in
tensity of a charged jet that moves in vacuum 
[ cf. Eq. (5)]. 

(b) In this case the transverse forces for the 
harmonics of the P-field which satisfy the condi
tion in (14) are written in the following form: 

F~.n.a (15) 

27tkp2 (1- ~2 ) J n (ka) In (ka) {K -1/K) cos [(2n/3) (2~aja)'I•J 

{K + liK) - {K -1/K) sin [(2n/3) (2~a;a)'I•J 

It is apparent from (15) that the transverse force 
of the p -field depends on the parameter K • If 
K > 1, the harmonics of the field for which n < llcr 
(critical harmonics are those which satisfy the 
condition: % ncr (2 ~ a/a)3/ 2 =2m ± 1/2)11', 
m = 0, 1, 2, •••••• weaken the attractive force be
tween the jet and the inner cylinder whereas the 
harmonics of the field for which n > ncr intensify 
this force. On the other hand, if K < 1, the har
monics for which n > ncr weaken the attractive 
force whereas the harmonics below the critical 
harmonic intensify it. 



A CHARGED CURRENT-CONDUCTING JET AND A FF.RRITE 459 

(c) The functions <t>h, 3 and Fr!n,3 which char
acterize the I -field are obtained from Eqs. (13) , 
(14) and (15) by means of the following substitu
tions: pv- I, K- {2p. D..'a/a€, ( 1- {32)-- 1; thus, 
for the I -field the parameter which characterizes 
the maxima and minima on the spectral intensity 
curve and determines transverse forces is the 
quantity ...; 2 p. D. a/ R€ • 

(d) A comparison of cases I and Ill shows that 
there is no difference when (14) is satisfied. 
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