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THE importance of accounting for the energy 
spectrum of shower-producing particles in esti
mating their energy from the angular distribution 
of the secondary particles has been stressed in a 
number of discussions.* One can account for the 
spectrum without recourse to any theory of mul
tiple-meson production. 

Let 8 * and (J represent the angle of 1r meson 
emission in the c.m. and laboratory systems re
spectively. We have then 

Yc tan f!; = sin fJ* /(cos fJ* + ~c/~*), 
where flcl {1* is the ratio of the velocity of the 
c.m.s. to the velocity of the meson in that system, 
and 'Yc = ( 1 - flc) - 112• Calculating hence 'Y + 1 = 
2y~, taking the logarithm and summing over all 
shower particles, we obtain 

1 ns 2 ' 1 ns [ sin a; ] 2 

Jn(y+1)=-fi-~lnt;,~-r-n:-~In • 313.-
s i-1 l s i-1 cos &; + 'c . i 

Let us introduce the notation 
2 

Xi = lnt----'-2n , fl.= In (y + 1 ), 
an vi 

U1 =-In[ ~in~ 1 .-j'~ 
cos &; + . c ~i 

Let us assume further that, corresponding to the 
assumptions of Castagnoli et al., 1 the U i are ran
dom quantities. We then have 

U; = x1 - fl.= In (2/tan2f!;)- In (y + I). 
Let us first assume, for the sake of simplicity, 

that f1clf1 = 1. Let us assume, besides, that the 
mesons are emitted symmetrically in the c.m.s. 
This means that the angle (]* occurs as often as 
does 1r- (]*, We have then 'Y + 1 = 2 and the av
erage of Ui equals zero, i.e., the random Ui are 
distributed uniformly about a zero mean value. 

We have investigated, furthermore, the distri
bution of the experimentally measured values Vi 
=Xi - x for a number of showers. The analysis 

shows that in a number of cases the distribution 
law of random Vi coincides to a satisfactory de
gree with the normal distribution law 

? (x) = ___!__exp {- (x-x)" } 
V21ta 2'a2 ' 

where rJ- is determined for each shower from 
the measm:ements of the angles of the shower 
particles with respect to the direction of the 
primary particle. Basically, a normal distribu
tion of the Vi is not a necessary condition. If 
we assume that x R: J.L, then Vi= Ui, which fully 
corresponds to the physical sense of Ui. 

The quantity x is itself random and subject 
to statistical fluctuations; in other words, it varies 
as the n measurements, on which it is based, are 
repeated. According to the theory of probability, 
x has a normal distribution for all n, with a 
mean value J.L and a standard deviation a' = a/fn. 
We shall call the quantity 

- 1 { lx-[L(yJJ2l 
(jl (x) = l'21ta' exp - 2a'2 J 

the probability P ( x/')1) that an event x takes 
place after the event J.L (y). In other words, it 
represents the probability of observing x for a 
given value 'Y of the energy of a shower-produc
ing particle. 

On the other hand, the spectrum of shower
producing particles is given by the expression 
p ( 5) = Ay-2•7• We calculate 

P <rlx> = P <r> P (xiY>I ~ P (y) P (xM dy, 

and obtain from the condition oP ( 'Y /X.) By = 0 

2.7a'2 (y+ I) =y[x-ln(y+ 1)1 

or In (y + 1) = x- 2.7cr'2 • 

This means, for example, that the energy of a 
shower-producing particle, found equal to 5500 
Bev without accounting for the spectrum, must be 
reduced to 4500 Bev if rJ- R: 1. 

We have assumed, in the above, that f1clf1 = 1. 
It can be easily seen that this assumption is unnec
essary. It has been shown by several authors2•3 

that the introduction of the energy spectrum leads 
to a change of ln ( 'Y + 1) = ln B2 + x. In conse
quence, in all previous formulae, one has to sub
stitute x for x + ln B2• The energy of the pri
mary particle is then found from the relation 

In (y + 1) =X+ In B2 - 2.7 cr 2/tz8 ; 

the value of rJ- is determined experimentally 

from the usual formula rJ- = _!_ 6 ( x - X: )2 • It is 
ns 
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then immaterial whether the distribution of x is 
normal or not. Such an estimate accounts for the 
energy spectrum Eij·7 of shower-producing par
ticles, and for the energy spectrum of secondary 
shower particles (through the factor B ) . The 
factor B depends also on the angular distribution 
of shower particles. (cf. references 2 and 3). 

More detailed data on actual energies of pri
mary particles for individual showers and fluctu
ation curves will be given in a work devoted to the 
study of showers detected in emulsions at high al
titudes. 

*The necessity of this has been demonstrated by N. L. 
Grigorov. A number of important observations has been made 
by G. P. Zhdanov. 
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P OMERANCHUK1 predicted that the melting curve 
of He3 would have a minimum on the p-T diagram, 
and that below this ~inimum the heat of melting 
would be negative. Since this effect has been ob
served experimentally,2 it is interesting to exam
ine this problem by using the thermodynamic func
tions calculated on the basis of the Fermi -liquid 
model, as proposed by Landau.3 Our purpose is 
to reconstruct the left branch of the melting curve 
from the experimentally-known portion of the curve 
above the minimum. 

The equation relating the two melting tempera
tures, for equal pressure, is of the form 

<D 1 (p, T1)-<Dr(p, T2(p))=<DII(p, T1)-<DII(p, T2(p)), 
(1) 

where .pi ( p, T t) and <I? II( p, T d are the thermo
dynamic potentials below the minimum point for 
the liquid and solid phases respectively, and 
.PI(p, T2 (p)) and <f?II(p, T2 (p)) are the corre
sponding quantities above the minimum point. 

It is known that above 0.5°K the entropy of 
liquid He3 is essentially of spin origin. On the 
other hand, the spin entropy should increase with 
increasing pressure, owing to the increase in the 
exchange interaction that contributes to the paral
lel orientation of the spins3•4 and competes with 
the Fermi tendency towards the anti-parallel spin 
arrangement. From the equality ( 8S/8p )T = 
- ( av /8T )p we see that the coefficient of expan
sion is negative in that region of temperatures, in 
which ( 8S/8p )T > 0. Consequently, the density of 
liquid He3 should have a maximum, as indeed was 
observed experimentally5 (the temperature of the 
maximum is T0 :::::: 0.4°K). In view of the fact that 
the density of liquid He3 has a maximum near the 
minimum point of the pT diagram, it is easy to 
show that the effect of the change. in volume can 
be neglected. Assuming that the coefficient of 
expansion of solid He3 is of the same order of 
magnitude as that of He4, the change in volume 
can also be neglected in the solid phase. Equa
tion (1) c!'an then be replaced by 

FI (T1, V)- Fl (T2, (p), V) 

=fll(T1 , V)-fll(T2(p), V), 

where F ( T, V ) is the free energy. 
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(2) 

Using the results of Khalatnikov and Abrikosov, 4 

it is possible to calculate the free energy of liquid 
He3 for two possible forms of the spectrum 

s (p) = p2 12m, 
e (p) = (p- p0) 2 /2m. 

(3a) 
(3b) 

The calculations yield, respectively 

F1 = RT {- 2/.1,! 3f,1, + In A}, (4a) 
F 1 = RT {- 2f,1,/f_,1,+ In A}, (4b) 

where 


