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The dependence of the width of a resonance absorption line on the internal field is found from 
the Landau-Lifshitz equations. Specific examples of ferrites with single-axis and cubic sym
metry are considered. 

l. The width of a radio-frequency resonance ab
sorption line, considering only spin-spin relaxation, 
can be described with the equation1•2 

• 1 
M = y[M x HJ--:r (M -x0H), (1) 

where Xo is the equilibrium susceptibility, and · 
M = xoHM. In the case of weak radio-frequency 
fields, when I hI << HM, this equation leads to a 
Lorentzian line shape. When applied to ferromag
nets, however, Xo is no longer constant. The mag
nitude of Xo can be deduced from Eq. (1), assum
ing a constant magnitude for.the vector M. Then 

Xo = M 2 / (M·H) 

and 

M = y[M X H]-AM-2 [M X [M X H]], 

where A.= x0/T. 

(2) 

The Landau-Lifshitz equation (2), in which the 
magnitude of the magnetization vector M is con
stant, is conveniently expressed in polar coordi
nates, where the orientation of the vector M is 
given by its polar angle. ,J and its azimuthal angle 
cp • Introducing the radial, polar, and azimuthal 
components of the field, HM, H,J, and Hq;, 

Eq. (2) becomes 

vhere a dimensionless attenuation parameter 
~ = A./yM has been introduced. 

(3) 

Analogously, Eq. (1) becomes in spherical coor
dinates 

(4) 

(5) 

When M = const., with Xo = a-yMT, these equa
tions reduce to Eqs. (3). 

2. In a state of thermodynamic equilibrium the 
direction of the magnetization vector M in a fer
romagnet coincides with the direction of the effec
tive internal field HM, whose magnitude in turn 
can be found using the free energy F: 

The equilibrium orientation of the vector M, 
given by the angles J-0 and cp 0, is found from 
the conditions 

(6) 

(7) 
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If the free energy at this point is a minimum, the 
equilibrium is stable. 

Now let us consider the non-equilibrium state, 
which arises when the effective field changes with 
time. In this event the orientation of the vector 
M will change, owing to the appearance of the 
components HJ and Hcp in the non-equilibrium 
state. It is not difficult to show that 

H&=-F&JM; H"'=-F"'/Msin&0 • (8) 

If the deviation from equilibrium is small, i.e., 
for small values of 

u& (t) = & (t)- &o; ucp (t) = <p (t)- Cflo· (9) 

we can restrict ourselves to linear terms in the 
expansions of F J and F cp, 

F & = F&!i}il& + F &cpucp; F"' = F &cpu&+ F "'"'ucp, (10) 

where the second derivatives F JJ• F Jcp, and F cpcp 
are evaluated at equilibrium. 

Now from Eq. (3), using Eqs. (8) to (10), wear
rive at a system of linear equations, describing 
small damped oscillations of the magnetization 
vector about its equilibrium position: 

·eM sin&0u.& = {fcp& -otffi}li}sin&0 } u& 

+ {F"'"'- rx.F!i}cp sin &0 ) ucp; 

-·(1M sin &0u~ = {F!i}!i} + otf&cp (sin&0f 1 ) u& 

+ {f&cp + otf<P<P (sin&of1 ) ucp. 

(11) 

In the absence of attenuation terms ( a = 0), these 
reduce to the equations used successfully in previ
ous work3•4 to determine the spectrum of the natu
ral frequencies of oscillation of the magnetization. 

The system of homogeneous equations (11) pos
sesses a periodic solution with frequency w, if 
this frequency satisfies the secular equation 

where w0 is the resonant frequency of oscillation, 

c»0 /':( = (1 + oc2)'1•H* (12) 

=(1 + oc2)'1'(Msin&0r{F!i}!i}F"'"'-Fg"'r•. 

and tlw is the breadth of the resonance absorption 
line. 

To find the resonant frequency w0 and the line 
breadth tlH, it is therefore necessary to have an 
exact expression for the free energy per unit vol
ume of the crystal. 

When the allowance for attenuation a ~ 0, leads, 
owing to the smallness of the parameter a, to a 
negligible shift of the resonant frequency w0• This 

explains the good agreement between experiment 
and Artman's theoretical calculations5 of the angu
lar variation of the resonant field in ferrites with 
cubical symmetry of the crystal lattice. 

In the case where the effective field H M• given 
by Eq. (6), does not coincide at equilibrium with 
the direction of the external applied field, the width 
of an absorption line may become anisotropic rela
tive to different crystallographic directions. In 
non-metallic ferromagnets this can depend on 
anisotropy of the shape of the sample as well as 
on the crystalline anisotropy. 

3. As an example, let us consider the case of 
a uniaxial single-crystal ferrite. Let the polar 
axis of the coordinate system lie along the hex
agonal axis of the crystal, which is the axis of 
least magnetization, and let the aximuth angle be 
measured from the direction [ 1010 ]. Then the 
angle-dependent part of the free energy per unit 
volume of an ellipsoidal specimen has the form 

F = Ksin2 &-MH(sin6cosrpsin&coscp 

+sin6sinq,sin&sincp +cos6cos&) (14) 

+ { M 2 (N x sin2 & cos2 cp +iVy sin2 & sin2 cp + Nz cos2 & ) , 

where J and cp are respectively the polar and 
azimuth angles, which determine the orientation 
of the external field. We limit ourselves here to 
anisotropy of the first order, and neglect magneto
striction effects. 

The problem of determining the equilibrium 
orientation of the vector M for an arbitrary ori
entation of the external applied field (equivalent, 
in the absence of this field, to the problem of do
main structure) is very complicated. The calcu
lation can be performed comparatively simply only 
for the case where the external field lies in the 
base plane, i.e., where e = 7r/2. 

In this event, if cp = 1r/2, and 

(Nu- Nx)M < H < 2~ + (Ny- Nz) M, 

then 

{[2K J } 2K + (2N y - N x - N z) M' 
H*2= M+(Nu-Nz)M 2_H2 2K+(Nu-Nz)M' ; 

A:= 2~ + (2N y- N x- Nz) M (15) 

[2K + (N y- Nz) M2]2- H2M2 

t M [2K + (N y- N z) M"j 

If, on the other hand, cp "" 1r/2 and H ~ 2K/M 
+ ( Ny - Nz) M then 

H*2 = H 2 - 2KH j M- (Nu-Nx)(HM -2K) 

-M(Nu-Nz)[H-(Nu-Nx)M]; (16) 

uH Joe= 2H -2K I M- (2Ny- Nx-Nz)M. 
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Material I Direction of I I 
E'xternal field Hres 

Manganese [111] 3176 
ferrite with [110] 3225 
zinc impurities [100] 3407 

Manganese [111] 3214 
ferrite [110] 3280 

[100] 3442 

In the case where cp = 0 ( field directed along 
the [ lOlO] axis) it is necessary only to inter
change Nx and Ny everywhere. For an arbitrary 
ellipsoid, Nx >" Ny, and in general the line width 
will be anisotropic with different orientations of 
the external field with respect to the base plane. 

For a spheroidal sample ( Nx = Ny = N, Nz = 
47T - 2N ] , there is no anisotropy of the line width 
within the base plane, since for a given orientation 
of the field within this plane we have 

D.H 2 [2K I M- (4'"- 3N) M]2- H2 

"' 2K I M- (41t-3N) M 

for H < 2K / M - ( 4r. - 3N) M, 

D.H 2K 
--;- = 2H- M + (4r.-3N)M, 

(17) 

for H?2KJM-(4r.-3N)M. 

If attenuation is neglected ( a = 0 ) , we arrive at 
the expression for the res·onant frequency given in 
reference 4. 

4. As a second example, consider the case of 
a single crystal with cubic symmetry. This case 
is of especial interest, since the majority of single
crystal fer rites have this symmetry. For the co
ordinate axes x, y, and z, we select the axes 
[010], [001], and [100], respectively. The chosen 
polar axis is [ 100 ], which for the monocrystals 
with negative anisotropy of interest here is the 
axis of difficult magnetization. The azimuth angle 
is measured from the [ 010] axis. We limit our
selves henceforth to a spherical specimen ( Nx = 
Ny = Nz = 47T/3), for which we assume that the 
applied external field H lies in the plane [ 110 ]. 

If, as before, we confine our attention only to 
anisotropy of the first order (which is possible 
except at excessively low temperatures) and neg
lect effects of magnetostriction, then the angle
dependent part of the free energy per unit volume 
has the form 

F ={K[sin2 2-B-+sin4 -3-sin2 2rp] (18) 

- MH [cos a cos -3- +sin a sin -3- sin (rp+r./4)], 

where (} is the polar angle that determines the 
orientation of H in the ( 110) plane. 

It is not difficult to show that if the external 
applied field H is sufficiently large, and lies 

82 12.5·10-3 7.0·108 
70 10.7·10-3 6.1·108 
56 8.4·10-3 5.1·108 

66 9. 9·10-3 5.8.108 
50 7.5·10-3 4.3·108 
46 6.8·10-3 4.1·108 

along one of the principal crystallographic direc
tions belonging to the plane ( 110 ) , then M is 
parallel to H at equilibrium. 

Calculating the second derivatives of the free 
energy at equilibrium from Eq. (18), and substi
tuting these in Eqs. (12) and (13), we find the res
onant frequencies and line breadths for different 
directions of the external field. 

If (} = 54°44', i.e., if the field H lies along 
the [ 111] axis, which, for a crystal with negative 
anisotropy, is the axis of easy magnetization, then 

!!.H = 2a.H (I + 41 K I/3MH). (19) 

If (} = 7T/2, i.e., the field H lies along the [ 110] 
axis, then 

!!.H = 2a.H (I+ j KI/2MH) (20) 

Finally, if (} = 0, where the field lies along the 
axis [ 100] of difficult magnetization, then 

!!.H = 2a.H (I -I K 1/MH) (21) 

The corresponding formulas for the resonant fre
quencies, neglecting relaxation, have been com
puted by Artman. 5 We notice that for a single
crystal ferrite with positive anisotropy the signs 
in front of I K I /MH in the expressions (19) to 
(21) are reversed. 

It follows from the above definitions that the 
spin -spin relaxation time is related to a by the 
expression 

+ = yM-2 (M ·H) a., 

in which we can set M • H = MH. 

(22) 

The angle dependence of the width of a reso
nance absorption line in a ferrite of cubic sym
metry has been studied previously. 6• 7 In the first 
of these references, a manganese ferrite with a 
small zinc impurity was investigated at 9100 Mcs. 
The effective anisotropic field K/M at room tern
perature amounted to -71 ± 1 oersteds. In the 
second reference a manganese ferrite of composi
tion Mn0, 98Fet.860 4 was studied at 9300 Mcs. The 
effective anisotropic field at room temperature 
was -79 ± 3 oersteds. 

The experimental results for both ferrites and 
the calculated values of a and 1/ T are given in 
the table. 
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It is evident from the table that a and 1/ T 

are decreasing functions of the applied external 
field, with 1/T decreasing more slowly. 

It is also not difficult to verify that, as a con
sequence of the smallness of the term I K I /MH, 
the variation of T with different directions of the 
applied external field cannot be explained solely 
by the presence of the crystalline anisotropy of 
the sample. Calculation of second-order aniso
tropy cannot substantially alter this situation. 
Thus the relaxation time T in Eq. (1), turns out 
to be a slowly rising function of the field strength 
when M = const. Therefore the Landau-Lifshitz 
equation (1) agrees best with experiment if the 
parameter A. is determined from the relation 

(23) 

Further experimental investigation of the angu
lar variation of the breadth of resonance absorp
tion lines in ferrites of different compositions at 
various microwave frequencies and temperatures 

is of interest for a more detailed explanation of 
the dependence of the relaxation time T on the 
intensity of the applied magnetic field. 
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The 1r- e + v + y decay is investigated for vector and axial-vector interactions. An exact 
relation between the probability of the vector-type part of the decay 1r - e + v + y and the 
probability of the decay 1r0 - 2y can be established by assuming that the direct interaction 
between 1r mesons and the electron-neutrino field, suggested by Gell-Mann and Feynman, 
exists in the vector-type theory. It is found that the axial-vector-type decay accounts for the 
main part of the total probability for the 1r- e + v + y decay. The ratio of the total proba
bility for the 1r- e + v + y decay to the probability for the 7T- 11- + v decay is of order 
5 x 10-6• Expressions for the angular and energy distributions of the electrons and quanta 
are obtained. 

GELL-MANN and Feynman1 suggested a scheme 
for a universal weak interaction of the nucleons 
with the electron-neutrino field is of the vector
and axial-vector-type. The interaction Hamiltonian 
has the form 

Hl=(~y"'(Gv+y5GA),+lji)J"'+ Herm. conj., (1) 

JIJ. = (~eY//2(1 +Ys)ljl,), 

where 

'"- iljlp) +- ,;-2 (01)- 1 ( + ' ) 
'f- \ljlN ' 't - y 00 -l.F2 'tx l'ty ' 

Ys =- (n), Y"' = {~. ~oc), 

and Gy and G A are coupling constants. Gell
Mann and Feynman (see also reference 2) assume 
that there exists a direct interaction of the 1r 

mesons with the electron-neutrino field, which 
is described by the Hamiltonian 


