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The solution may be given in parametric form 
(parameter ~ ) : 

1 [1-(2-x)R~(1-R2)][(x/2)(1-R~)+xf(x-1)] 
h1 2R 2 [x (1- R 2) + 1] 

2-x 2 2-x 
+-4-R.(I-R.)-2(x-1)R.-1; (19) 

z2 = h1 [I- (2 -x) R~ (I- R2)J /2R2 [x(l- R 2) + 1]; 
2 2- )( v. = xz. + - 2-h1R.. vl = R.v •. 

where K is the adiabatic coefficient. This solu
tion is given in Fig. 7 for K = %. 
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In analogy with Einstein's theory of gravitation, the existence of a physical vector field is 
treated as the curvature in a "non-Pythagorean" space whose metric is ds = 'Yi dxi. This 
leads to nonlinear field equations which in the linear approximation (for weak fields ) be
come the usual equations. In spite of its potential being singular, the total energy in the 
field of a point charge is finite. 

1. STATEMENT OF THE PROBLEM 

As a rule, the nonlinear generalizations of field 
theories are constructed in an attempt to eliminate 
divergences in ordinary field theory. It is known, 
however, that this can be done also in other ways 
( nonlocal interactions, the use of higher driva
tives, space quantization, etc.). Furthermore, 
one likes to hope that it is possible to go on without 
essentially leaving the framework of the existing 
theory. This would seem to be why the nonlinear 
theories do not receive wide recognition at present. 

We wish to emphasize that a nonlinear generali
zation of field theory is necessary, independently 
of the divergences in the linear theory and inde
pendently of the possible necessity for other gen
eralizations. Our argument is based on the follow
ing considerations. 

(a) In principle, nonlinearity in field theory fol
lows unavoidably from the fact of pair creation and 
annihilation, which leads to nonlinear effects such 
as scattering of light by light. It is not, therefore, 

merely accidental that when dealing with interac
tions in modern field theory we arrive at nonlinear 
equations. Nonlinearity whould therefore not be 
considered simply one of many possible methods 
for eliminating the difficulties of the theory, but 
as a reflection of the objective properties of the 
field. 

(b) It is well known that in all nonlinear theo
ries there appears a characteristic length which, 
although it has different meanings in different ver
sions, is always of the order of magnitude of the 
"classical radius" r 0 = e2/m0c2 of the field's 
source. This parameter serves as a criterion 
that can be used to define weak fields (with r 
» r 0 ) for which nonlinear effects can be neg
lected. It turns out that in electrodynamics all 
real processes take place in a region for which 
r » r 0 (weak fields and low energies), and the 
linear theory is insufficient only when one needs 
to consider virtual processes with arbitrary en
ergies. The situation is different, however, where 
in mesodynamcs, weak fields ( in the above sense 
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of the word) practically never exist. In this case 
the critical parameter will be Ro = g2 /M0c2, where 
M0 is the nucleon mass. If we take g2/hc ::::; 14 
( as is presently believed), we obtain R0 ::::; 3 x 10 -!3 

em. But because the range of nuclear forces is so 
short that they practically vanish at a distance AIJ. 
= h/JJ.c ::::; 1.4 x 10-13 em (where IJ. is the meson 
mass), there is essentially no field at r > Ro· 
Therefore the values of r equal to and less than 
AIJ., at which the field is measurably different 
from zero, lie entirely within a region whose 
radius is less than Ro, a region in which the 
linear theory is no longer applicable. This means 
that the Yukawa potential cannot serve as a first 
approximation, and this may be the cause of many 
of the difficulties in the meson theory of nuclear 
forces. It is important to see that it is not so 
much a matter of g2/hc being greater than 1, but 
of R0 being greater than AIJ. (which is deter
mined by the value of IJ.). It is not accidental, 
therefore, that an expansion in inverse powers of 
g2 /he also fails. The difficulties in linear meso
dynamics lie not in the fact that the nuclear inter
action is strong, but that it is of such short range. 

(c) It is thought that an important deficiency of 
nonlinear theories is that on the one hand, they 
are difficult to quantize, while on the other hand 
an unquantized ( classical ) nonlinear theory can 
hardly be of interest. This is because much be
fore the nonlinear deviations become of impor
tance (at distances of the order of the classical 
radius of the particle which is the source of the 
field ) , quantum effects begin to predominate ( at 
distances of the order of the Compton wavelength 
of this particle ) . But this also is true only for 
electrodynamics, where r 0 /A.0 = (e2/m0c2 )/(h/m0c) 
= e2/hc = 1/137. In mesodynamics, on the other 
hand, R0 / A0 = ( g2/M0c2 )( h/M0c) = g2/hc ::::; 14, 
so that progress in classical mesodynamics should 
indeed begin with the nonlinearities. 

(d) In the special theory of relativity it becomes 
clear that Newtonian mechanics is good only if v 
« c and must be generalized at high velocities. 
The general theory of relativity shows that me
chanics must be generalized also for high accel
erations, i.e., for large forces or intense fields 
( and this generalization leads to a nonlinear 
theory ) . But it has been shown by Fock1 that 
Einstein's theory does not describe arbitrary 
accelerated motion, but only motion in the gravi
tational field. The theory therefore refers only 
to the gravitational field, and is not a general 
theory of noninertial motion. The problem then 
arises of performing analogous generalizations 
for other fields as well, in particular for the prac-

tically most important cases of the electromag
netic and meson fields. 

At first glance such a statement of the problem 
(to the extent, at any rate, that it refers to the 
electromagnetic field) may seem confusing, since 
there already exists a very well known general 
relativistic covariant formulation of electrody
namics. This generalization, however, deals only 
with the gravitational field associated with the 
electromagnetic one, and leads, in particular, to 
a criterion of nonlinearity which is not e2/m0c2, 

but ( e2 /m0c2 )( U e), where g = m0 ...fK is the 
gravitational charge. For this reason this gen
eralization has little practical meaning. What 
we are discussing, on the other hand, is a gener
alization that makes electrodynamics itself non
linear, without considering any other kinds of 
fields (even the gravitational). From this point 
of view, Einstein's theory (and, in particular, 
the geometrical methods he uses ) should be 
thought of as a model for the construction of the 
nonlinear field theory, a model which, although it 
has been applied to a tensor (specifically, the 
gravitational) field, is one that can be used in 
attempts to construct a nonlinear the9ry also for 
vector, spinor, and other fields. In the present 
work, this will be done for a vector field,* and 
the first field treated will be the simple electro
magnetic one (with zero rest mass, in quantum 
terms). 

It may seem that a geometric treatment of the 
electromagnetic field is impossible even if only 
because this field produces in general different 
accelerations in different bodies, so that one can
not formulate an equivalence principle. Also, one 
may point out that the four components of the elec
tromagnetic potential are insufficient for a gener
alization of the Pythagorean theorem, since they 
cannot be identified with the components of a 
metric tensor. 

These difficulties can, however, be overcome. 
(a) If we admit to "Einstein's elevator" only 

those bodies whose charge-to-mass ratio ( speci
fic charge) e/m0 has a given fixed value, the 
situation arising for these bodies is the same as 
in the theory of gravitation, since by a suitable 
coordinate change the external field can be elimi
nated and the desired relations obtained. For any 
other group of bodies with another specific charge, 
we obtain (formally) the same relations. The 
specific charge will enter only in the form of a 
parameter ( replacing the gravitational constant 
in the gravitational equations). Such a device has 

*A preliminary version has already been published.2 
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already been used by other authors, for instance 
by Rumer. 3 

(b) The four-component electromagnetic field 
can be treated geometrically by associating with 
it a "non-Pythagorean" four-space, whose metric 
is given by four functions making up a four-vector, 
so that the line element in this space is given in 
terms of increments in the coordinates by the 
equation 

ds = y;dxi, i = 1, 2, 3, 4, (1) 

where dx4 = ic dt. This "space" is simply a model; 
so far it is in no way related to any physical space, 
and is merely an accessory similar to the n -di
mensional space of statistical mechanics or "iso
topic spin space." 

A non-Pythagorean metric such as (1) has been 
used before. It was first introduced by Fock and 
Ivanenko4 and was later analyzed in detail by 
Mirura et al. 5 More recently it has been studied 
by Flint and Williamson.6 In all these works, how
ever, the Yi were treated as modifications of the 
Dirac matrices and were used to generalize the 
Dirac equation, mostly in order to account for the 
gravitational field, so that it was assumed that 
YiYk + YkYi = 2gik· 

Here we propose an entirely different problem, 
namely that of studying the field Yi itself. With 
this field we associate a definite physical field 
whose equations we wish to find. 

2. CURVED"NON-PYTHAGOREAN"SPACE 

A construction of a curved non-Pythagorean 
space whose metric is given by ds = Yi ctxi has 
already been given. 2 In particular, the following 
expressions were obtained. 

(a) The equation of a geodesic is 

d2x,. 1 ds2 + r~dxk Ids = O; 

(b) The action function is 

(c) The energy-momentum tensor is 

,ffik - <ff'ibsk - t' (I' rin- ~ bi r rmn) bsk - s -- cons sn 4 s mn ' 

with 
r~ = I'kmbmi, rim= I'nnbikbmn' 

rik = ay" 1 a xi - ay,. I ax" = - r",., 

(2) 

(3) 

(4) 

bin= 11z (yiyk + YnY;) = bhi' bin= 1/z (yiyk + y"y;) = blu' 

i ik 
y = b y4 , yi = rx,. + h,., 

where the ai are Dirac matrices, and the hi 
are c -number increments which give the devia
tion of the space from Euclidean. 

In addition, we have the relations 

bnbkz = b~ =a~; (5) 
ai\zjaxn + arznlaxk + arnk ;ax1 = 0. (6) 

The generalization given by Eq. (3) of the Maxwell 
Lagrangian 

(7) 

follows obviously from the concepts described at 
the start: the Lagrangian should be invariant in 
the non-Euclidean space defined by the metric (1). 

Thus the geometric interpretation can be used 
to unite the formalism of electrodynamics in the 
"general theory of relativity" with the well known 
idea of Mie. In the expression Fik = F mngimgkn 
we make the substitution gik- bik = % ( YiYk + 
YkYi ), where Yi = ai + sAi, so that we obtain, 
in ~~reement with Mie, a tensor of the form Hik 
= u1 ( Fmn• Az), and, as must occur in his 
scheme, 

rim = const (a.Z I ar;m)· 

Roughly speaking, what happens is that the action 
of the gravitational field on the electromagnetic 
one is replaced by the electromagnetic field acting 
on itself. 

The fact that the Lagrangian of Eq. (3) contains 
the field potentials explicitly ( in terms of the bik) 
might seem to be a contradiction in our theory, 
which then is no longer gauge invariant. But it is 
known that Einstein's theory of gravitation also 
has this property, and this is never considered a 
defect. The fact is that a direct relation between 
gauge invariance of the field equations and the zero 
rest mass of the quanta associated with this field 
is necessary only in a linear theory. Thus all we 
can demand from a nonlinear theory is that the 
equations be gauge invariant in linear approxima
tion. Our theory satisfies this condition, since in 
the linear approximation the Lagrangian of Eq. (3) 
becomes the Maxwell Lagrangian of Eq. (7). 

3. THE ELECTROMAGNETIC FIELD 

Let us base the theory of the electromagnetic 
field on Eqs. (2), (6), (3), and (4). It is clear that 
the expressions entering into these equations are 
matrix expressions. They can therefore be treated 
as operators in some function space, and the "or
dinary" expressions (for instance the Lagrangian 
and the components of the energy momentum ten
sor) can be treated as sort of "mean values" given 
by relations of the form 

L ='Sp z. (8) 
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These then establish the relation between sub
sidiary ("matrix") space of Eq. (1) and "ordinary" 
Riemannian space.* 

In addition, we must yet establish the relation 
between the rim from the nonlinear theory and 
the Fim from the linear one, as well as find the 
constants in Eqs. (3) and (4). 

For a weak field, the geodesic equation (2) gives 

since bmi ~ bfi = omi, and ds = c dT. Compar
ing this with the Lorentz formula 

• e 
m0u; = c Fu,uk 

and noting that Yi = Yi + hi = ai + hi, we have 

h; = (e / m0c2) A;. 

Similarly 

so that comparing with (7), we have 

:£ =- (1 / 161t) (m0c2 / e)2r;mrknb1"bmn. 

Similarly, we obtain 

(9) 

(10) 

(11) 

Here e and lllo are the charge and rest mass 
of a test body. It should be noted that the proper
ties of the test body enter into our theory in a very 
important way, since they give the criterion of 
smallness ( and therefore nonlinearity ) of the 
field. According to this criterion the field may 
be considered weak (and described with sufficient 
accuracy by the linear theory) if the energy of the 
charge in this field is much less than the self
energy of the charged body, that is if ecp « m0c2 

or h « 1. 
It is a well known fact that no such test body 

enters into the theory of gravitation, and that the 
limit of applicability of the linear approximation 
to the gravitational field is the same for all test 
bodies and is uniquely determined by the field 
"strength" at the given point ( for a static spheri
cally symmetric field this is the ratio of the grav
itational radius KM/ c2 of a source of mass M 
to the length of the radius vector at the given point). 
In other words, no test-body parameters enter into 
the solution of the field equations. This is related 
to the fact that the gravitational charge of any 
body is proportional to its mass (with the same 
coefficient of proportionality for all bodies ) , so 
that (~/m0c2 ) 2 = (m0..fK/m0c2 ) 2 = K/c4, which 

*This idea is due to E. S. Fradkin. 

does not involve the test body. The fact that the 
test-body parameters enter into the solution of 
the field equations in the nonlinear theory of the 
electromagnetic field was pointed out at the very 
start when we spoke of using an equivalence prin
ciple in this theory. 

To obtain and solve the field equations for the 
general case involves great mathematical difficul
ties. It is therefore useful to consider the simple 
but important special case of a static spherically
symmetric field. In this case we may attempt to 
find a solution of the form hJ.t = 0 (for J.t = 1, 2, 
or 3 ), and h4 = ih;.! 0. Then all the r J.tV = 0, 
and rJ.t4 =- r 4J.t = 8h4/8xJ.t, so that 

:,e = r,mrim = r,mrknbikbmn = 2 ah4 ah4 (bp.Vb44- bp.4bv4), 
axP. axv 

(12) 

Since 

we have 

bp.v = a.,.., bp.4 = rx.p.h4, b44 = 1 + 2rx.4h4 + h!. 

Using the relation bikbkz = oh which gives ten 
equations for the ten desired b1k, we arrive at 

"" 2 g 2h! g 2h. 
brr = 1 + h4 H + ~OC4, b44 = H- HIX.4• 

p.v 2 g A 2h! 
b = h,-grx..,.rx.v + (-1) Hrx.5rx.,_, v oF!J., A.+ !J., v, (13) 

p.4 g 2h! 
b =-h4 -grx..,.+ H-rx.p.rx.4. 

where g = 1 - 2hi, and H = 1 - 8h~ + 4h~. 
From this it follows immediately that 

Sp (bp.vb44 - bp.4b.4) = 0 (!L =/= v), (14) 

and 

(15) 

since the trace of all the ai and products of dif
ferent ai vanishes. 

Thus 

(16) 

so that in agreement with the usual expressions 

we obtain the field equation in the form 

V2h +_!_(Vh )2(a;ah,) (g!H) = o 
4 2 4 g/H 

or 

h" + ~ h' + _!_ (h')2 a ln (g 1 H) = 0 
r 2 ah ' 

(17) 
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where g = 1 + 2h~, and H = 1 + 8h2 + 4h4, since 
h4 = ih. 

Integration gives 

(18) 

Further calculations are difficult, since it is 
necessary not only to write the elliptical integral 
on the left as an explicit function of h, but to find 
the inverse function h = h ( r). 

It is therefore convenient to obtain an approxi
mate but simple solution, writing 

[ 1 + 2h2 ]'/, [ 1 + 2h2 ]''• 2 ~'/ 
1 + 8h2 + 4h4 = 1 + 4h2 + 4h• = ( 1 + 2h ) '· 

(19) 

It should be noted that the difference between the 
approximate answer and the exact one increases 
neither as h- 0, nor as h - oo, On the contrary, 
in these limits tliis difference vanishes, and is as 
large as about 20 percent only in a small interval 
about h r:::J 1. 

With (19), the solution of (18) becomes 

or 

Since in the linear approximation we must have 
h=r0/r, where r 0 =e2/m0c2, wehave C=r0 

and C1 = 0, so that finally 

sinh-1 (V2 h)= V2 r0 ) r, 
whence 

h =sinh (V2 rol r) I V2. 
cp = (ej r0 V2)sinh(r 0 V21r). 

(20) 

(21) 

As r approaches 0, the potential starts in
creasing very rapidly at a distance of the order of 
r 0, so that one may say that two colliding elec
trons behave like solid spheres of radius r 0• For 
r » r 0, we obtain the usual Coulomb potential. In 
the second approximation, we have 

cp = (e I r) ( 1 + r~ j3r2); 

so that the correction for the first Bohr orbit 
( r = a0 = h2 /me2 ) is of the order of a 4, where 
a= e2/hc. 

Although the potential of (21) has a high singu
larity at r = 0, for r > r 0 stable orbits are pos
sible. This can be seen using the virial theorem, 
according to which if periodic motion is to take 
place, then E < 0, where E = T + V = 1/ 2 rV' + V. 

In our case we have 

V _ _ e • h. r0 V2 V' =.!!__cosh r0 V2 - -v- sm --, • , r 0 2 r r r 

so that 

E e hroV2!1 r0 V2 t hr0 V2) 
= ro V2 cos -,- \2-,-- an -,-

= Jfe - COSh X (1- - tanh X 1. 
~ 2 j 

where x = r 0..f2 /r. Since tanh x > x/2 for 
x ~ 2, and since ( e/r0 ) cosh x > 0, it follows 
that E < 0 for all r > ...f2 r 0 /2, or almost always. 

The potential of (21) can now be used to calcu
late the total energy of the electromagnetic field 
of the electron. In our case of a static spherically 
symmetric potential (ha = 0, 8hi/8x4 = 0), we 
obtain 

so that 
00 

1 1 ~ e2 m = --,--P4 =- T"d't = ---- J 
tc C2 2 V 2 r0c2 ' 

0 

where 

j = r COSh2 X (cosh4 X- 2 sinh2bx) dX = 1' 
0 (cosh4 x + 2 sinh2 x)2 

or 

m=m0 j2 V2. (22) 

In spite of the highly singular potential given by 
(21), the total energy of the field is finite. 

It follows from (22) that in the given theory the 
classical electromagnetic electron mass is only 
part of the total electron mass (the question of 
the "bare" mass remains open) so that the con
dition of Laue's theorem ( jTikdT = 0 for all 
components except T44 ) is naturally not fulfilled 
in this case. This is not a defect in the theory, 
but speaks in its favor, since certain phenomena 
( such as electron production in Jl -meson decay) 
indicate that the electron has some elements in 
common with other "elementary" particles. In 
addition, we must yet "leave room" for the quan
tum ("transverse") mass (this quantity will be 
calculated later; it is also found to be finite and 
of the correct order of magnitude am0 ) • 
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The dependence of the width of a resonance absorption line on the internal field is found from 
the Landau-Lifshitz equations. Specific examples of ferrites with single-axis and cubic sym
metry are considered. 

l. The width of a radio-frequency resonance ab
sorption line, considering only spin-spin relaxation, 
can be described with the equation1•2 

• 1 
M = y[M x HJ--:r (M -x0H), (1) 

where Xo is the equilibrium susceptibility, and · 
M = xoHM. In the case of weak radio-frequency 
fields, when I hI << HM, this equation leads to a 
Lorentzian line shape. When applied to ferromag
nets, however, Xo is no longer constant. The mag
nitude of Xo can be deduced from Eq. (1), assum
ing a constant magnitude for.the vector M. Then 

Xo = M 2 / (M·H) 

and 

M = y[M X H]-AM-2 [M X [M X H]], 

where A.= x0/T. 

(2) 

The Landau-Lifshitz equation (2), in which the 
magnitude of the magnetization vector M is con
stant, is conveniently expressed in polar coordi
nates, where the orientation of the vector M is 
given by its polar angle. ,J and its azimuthal angle 
cp • Introducing the radial, polar, and azimuthal 
components of the field, HM, H,J, and Hq;, 

Eq. (2) becomes 

vhere a dimensionless attenuation parameter 
~ = A./yM has been introduced. 

(3) 

Analogously, Eq. (1) becomes in spherical coor
dinates 

(4) 

(5) 

When M = const., with Xo = a-yMT, these equa
tions reduce to Eqs. (3). 

2. In a state of thermodynamic equilibrium the 
direction of the magnetization vector M in a fer
romagnet coincides with the direction of the effec
tive internal field HM, whose magnitude in turn 
can be found using the free energy F: 

The equilibrium orientation of the vector M, 
given by the angles J-0 and cp 0, is found from 
the conditions 

(6) 

(7) 


