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The neutron-deuteron scattering lengths were computed by a variational method, taking into 
account deformation of the deuteron. The radial dependence of the nuclear force potential 
was chosen to be a Gaussian, with parameters adjusted to agree with low energy data on the 
n-p interaction. The computation was done only for Serber-type exchange forces. The val
ues of the scattering lengths agree with the experimental values within the experimental 
errors. 

AT low energies, the scattering of neutrons by 
deuterons is characterized by two scattering 
lengths: a4· for total spin S =% and a2 for 
S = ';/2• Analysis of the experimental data gives 
two possible sets of values of a4 and a2: 1 

a4 = 6.2 · 10-13 em; a2 = 0.8 · 10-13 em (1) 

or 

a4 = 2.4·10-13 em; a2 = 8.3·10-13 em. (2) 

The scattering lengths have been calculated by 
different methods in various theoretical papers.2- 7 

In calculating the s -phases of low energy n-d 
scattering, Christian and Gammel5 used the Hul
then8 variational method and assumed that the deu
teron is not distorted by the incoming neutron. The 
appropriate Euler equations were ihen solved and 
values of a4 ·= 5.9 x 10-13 cm, a2 = 1.5 x 1o- 13 cm 
were found for the scattering lengths. 

Burke and Robertson 7 made use of the approxi
mation of an undistorted deuteron directly in the 
Schrodinger equation and computed the scattering 
lengths for several values of the radius of nuclear 
forces. Their results are in poorer agreement 
with experiment than those of reference 5. The 
solutions found in references 5 and 7 require co~
plicated calculations which have to be done on 
electronic computers, but the values found for the 
scattering lengths are not in sufficiently good 
agreement with experiment. 

Verde3 and Clementel4 used the direct varia
tional method, which leads to less complicated 
calculations. However, their results are not sat
isfactory, apparently owing to too crude an approx
imation to the deuteron wave function and to the 
assumption that the deuteron is not deformable. 
Even though Verde's results are in agreement 
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with the experimental values (2) for the scatter
ing lengths, from later work5- 7 and from consid
erations of symmetry of the wave function which 
are presented in reference 9, it appears that the 
set in (1) are the correct values. It is therefore 
of interest to obtain the correct values of the scat
tering lengths by a direct variational method taking 
into account the deformation of the deuteron. In
stead of using Hulthen's method,8 it seemed to us 
more effective to start from the variational prin
ciple for nucleon-nucleon scattering phases which 
was given by Rubinow .10 According to Rubinow, 
the variation of a certain functional is zero for 
the solution of the wave equation, and its extremal 
value determines the scattering phase. The func
tional depends only on "interior" wave functions 
which are different from zero only within the 
range of action of the scattering potential. Such 
functions are easily approximated by damped ex
ponentials. The generalization of Rubinow' s vari
ational method to n-d scattering is presented 
below. 

Let the index 1 refer to the incident neutron, 
and 2, 3 to the neutron and proton forming the deu
teron. ri is the radius vector to the i-th nucleon; 
M is the nucleon mass; E is the kinetic energy of 
the neutron in the center-of-mass system, Ed the 
binding energy of the deuteron; S is the total spin 
of the system, equal to % or ';/2; ai are the spin 
variables, which take on values ± ';/2• The nucleon
nucleon interaction is assumed to be central and 
charge-invariant: 

V (ik) = U (ik) (w + bB,k + mM,n + hH,k), (3) 

where U ( ik) is a fuaction of the distance I ri - rkl 
between the i-th and k-th nucleons; w, b, m, and 
h are respectively the fractions of Wigner, Bartlett, 
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Majorana, and Heisenberg forces, w + b + m + h = 1, spin variables, we get for 1/J ( r, q) the equation 
Bik• Mik• and Hik are the corresponding exchange 
operators. Introducing the coordinates 

r = (V3/2) (ra- r2), q =- r1 + 1/2 (r2 + ra) 

the Schrodinger equation takes the form 

(~r + t!q + k2 - k~ + W) 'F(S) (r, q, cr1, cr 2 , cra) = 0, (4) 

where 

k2 = 4ME/31i2 , k~ = 4ME)3t.2 , 

w = v (12) + v (13) + v (23), 

~r and ~q are the Laplacians with respect to the 
variables r and q, respectively. 

The functions 'l'(S) are assumed to be every
where finite, continuous, and antisymmetric under 
interchange of the neutrons, and to have the follow
ing asymptotic form as q - oo: 

\f('f,) = x('f,) ( "1• <lz, cra) (fcoto4 + g), (5a) 

'¥('/,> = {1'> (cr1, cr2, cra) (fcoto2 +g), (5b) 

where o4 and o2 are the s -scattering phases in 
the states with S =% and S = 1,12, respectively; 

1 1 . 1 1 f = -,1-?d (r) -sm kq, g = ·-,1 '?d (r) -cos kq, (6) 
2r: ' q 21t ' q 

cp d ( r) is the wave function of the deuteron, 

X('{,)= cxl (crl) CXz (cr2) CXa (cra), 

x('/,) = {cxt(cr1) [cxz(crz)~a(cra) + ~2(cr2)cxa(cra)l 

- 2~1 ( crl) CX2 ( crz) cxa ( cra)} /liEf 

a and {3 are defined as usual: 

cx(1/z)=1, cx(- 1/2)=0, ~(1/2)=0, ~(- 1/z)=1. 

We expand the functions 'l!(S) in eigenfunctions 
of the total spin S and its z projection Sz. These 
functions have the form: 

for S = 3/ 2 , Sz = 3/ 2 , x.('J,) = cx1 (a1) cx2 (a2) cx3 (aa); (7) 

for S = 1/2, Sz = 1/2, 
.('{,) v-x~ = [~1 (cr1) CXz (az)- CX1 (a1) ~2 (crz)J CXa (cra)/ 2; (Sa) 

:x~'/,) = {[cx1 (cr1) ~2 (az) + ~t(cri) CX 2 (a2)] cxa (cr3 ) (Sb) 

-2cx1 (a1) CX2 (::~z) ~3 (:;a)}/V6, 

where the function (Sa) is antisymmetric and (7) 
and (Sb) are symmetric in the spins of the two 
neutrons. Then 

'F('J,> = x.('l.>\jl (r, q), (9) 

'F('f,> = x.i'1•>rp1 (r, q) + x.f1•>cpz (r, q). (10) 

Substituting (9) and (10) in (4) and separating 

where 

"= t!r + t!q + k2- k~, W4 = (x.('f,>, Wx.('f,>), 

while for cp 1 (r, q) and cp 2 (r, q) we have the 
pair of equations 

(T + W'' 2)rp = 0, 

where 

T = ('t 0), Wz = (Wu W1 2 )'' 

0 't, W21 Wzz 

? = (::) , w,k =<xi',,>, wxr,·>). 

(11) 

(12) 

To construct total wave functions 'lf(S) which 
are antisymmetric under interchange of the two 
neutrons, we need the following combinations of 
the functions f and g defined in (6): 

F4=(1-P12)f, 0,={1-P12)g, 

(1) v- (1) v-Fz =-( 3/2)(1+P12)f,02 =-( 3/2)(1+Pn)g, 

p~>=- 1/z(1-P12)f, 0~2>=- 1/z(1-Pu)g, (13) 

where P 12 is the exchange operator for the coor
dinates of the two neutrons. 

If in place of 1/J, cp1 , cp 2 we introduce new func-

tions Y 4, Y~1 ) and Y~2): 
(14) 

CJ11 = F~llcoto2 + 0~1>- Y~1 >, cp2 = F~2>coto2 + 0~2>- Y~2 > 

and impose the conditions: 

P12Y4 =- Y4, P12Y~1) = Y~1>, P12Y~2) =- Y~2>, (15) 

we find that all the functions Y and G are finite 
and continuous, and all the Y's go to zero for 
q- oo, so that it follows from (7) to (10), (13), and 
(14) that '11(3/ 2) and . '11(1/2) are finite, continuous, 
have the required symmetry and take on the form 
(5) as q- oo, 

Substituting (14) in (11) and (12), we get the 

equations for Y 4, Y~1) and y~2): 
('t + W4) (Y4- 04) 

-cotil4 [W4F 4- (1 - P12) U (23) f] = 0, (16) 

(T + Wz) (Y2- 0 2)- ctgo2 (Wz- Vz) Fz = 0. 

Here 

u2 = ( 1/2(1 +_Plz)V(23) <V3/2)(1-Pl2)U(23)) 
(1/2V3)(1-P12)U(23) 1/z(l+Plz)V(23) ' 
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and U ( ik) is defined in (3). In deriving (16) we 
used the fact that F 4 and F 2 satisfy the equations 

-rF4+(1-P12)U(23)f=0, (T+U2)F 2 =0, (17) 

which follow from (6) and (13). 
The set of equations (16) and (1 7) enable us to 

find the phases 64 and 62 by using the variational 
principle10 which states that the solutions of equa
tion (16) annul the variation of the functional 
L(Y -G), while <L>extr. = k cot 6. The func
tional L has the form: 

L = kcot'Yj(l + B)2 - C, (18) 

where TJ is the s -phase shift in Born approxima
tion; the quantities B, C for S = % are given by 
the formulas: 

B = ~ ~ d" (Y4- G~) {W4F 4 - (I - P12) U (23) f}, 

1 I C = 2 ~d-::(Y4- G4)(" + W4 ) (Y4 -- 0 4 ), (d' = drdq), 

and for S = 1/ 2 by 

where 

The computation of the scattering lengths was 
done with the potential used in reference 5: 

U(r)=U0 exp(-A2r 2), U0 =86.4Mev, (19) 

A -1 = I. 332. 10-13 em 

and the Serber exchange force. The potential (19) 
was chosen to agree with the data on the n-p in
teraction at low energies. For the potential (19), 
the approximate deuteron function has the form: 5 

?d (x) = 0.02133e-~.oax• + 0.08582e-0·16x' + 0.18115e-0.7Gx', 

(20) 

where x = A.r. 
The minimum of the functional (18) was found 

by the direct Ritz method, using trial functions 
satisfying the conditions (15). For S = %. we 
chose: 

(1) in first approximation, neglecting deforma
tion of the deuteron: 

Y ~ = (I - P!2) ?d (r) [ exp (- f-2q2)/2;,'1•q (21) 

N 

+] Cnexp(-nf-2q2 )], 

n=l 

(2) in second approximation, including deforma-

tion of the deuteron: 

Y4 =(I- P12) <I>, 

where P 12 is the operator which interchanges the 
coordinates of the neutrons, 

ci> = ?d (r) exp (- f- 2q2)/2"''1•q 

+ ]Cpnexp(-"(pA2r 2 -n).2q2), (22) 
p,n 

p=l,2,3; n=I,2 ... ,N; 

/1=0.03, y2 =0.16, j 3 =0.76. 

For each n, the sum over p in (22) contains the 
same exponentials exp ( -ypx2 ) as in (20), but 
the coefficients are varied. 

For S = Y2 the trial functions took into account 
deformation of the deuteron: 

(1) In first approximation, the deformation was 
included as in (22) 

y~l) =- <V3 I 2) (I + Pl2) <D, Y£2 ) =- 1/2 (I- p12) <I>. 

(2) In the second approximation, in the spin 
state (8a) we added an unknown multiple of a func
tion which is symmetric in the coordinates of all 
the nucleons. The introduction of such a function 
takes account of the fact that in the state (8a) the 
neuteron penetrates deep into the deuteron and all 
three nucleons interact strongly with one another. 
We chose this function in the form 

M 

v = .2: Am exp [- mf-2 (r2 + q2 ) / 2]. (23) 

Thus in this case the trial function had the form 
(1) v-y2 =-( 3/2)(1 +P12)<I>-v, 

Y~2! =- 1/2 (I- Pu) <I>. 

The computational results for the scattering 
lengths a4 and a2 are given in the table, in which 
the values of M and N indicate the number of 

Dependence of a4 and a 2 on number of 
terms in the trial functions (21), (22) 

and (23). For each n in (22), p runs 
through the values 1, 2, 3. 

a4 -1013 cm-l 

a2 ·10I"cm-l 

I First ap- I Second ap- I . 1 
proximation proximation f Expenment 

N=i 11.8 N=1 7.7 
N=2 7.5 N=2 6.3 6.2±0.2 
N=3 7.5 N=3 6.3 

N=1 1.7 Z-:~}1.1 N=2 1.7 0.8±0.3 

Z-~~}1.1 

terms included in the sums which appear in the 
trial functions (21), (22), and (23). It is clear that 
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the contributions of the terms in the trial functions 
drop off rapidly with increasing n and m, and 
that a4 = 6.3 x 10-13 em and a2 = 1.1 x 10-13 em 
coincide within the limits of error with the experi
mental values (1) for the scattering lengths. 

5 R. S. Christian and J. L. Gammel, Phys. Rev. 
91, 100 (1953). 

We are now in the course of calculation of the 
energy dependence of the s -phase, the depth of 
the potential and the type of exchange force, as 
well as the analysis of low energy proton-deuteron 
scattering, by the present method. 

In conclusion, the author thanks M. V. Kazar
novskii and A. S. Davydov for valuable discussions 
and continued interest in the work. 
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A treatment is given of the kinetic equations for impurity semiconductors, which describe 
transitions from the impurity levels to the conduction band. On the assumption that the dis
tribution function of the free electrons (or holes) has the form of an equilibrium distribution 
function with a certain effective temperature that can be determined from the equations, ex
plicit expressions are given for the energy and kinetic C!oefficients for cases in which the life
time of the electrons in the conduction band is determined by photorecombination and triple
collision recombination processes. Nonradiative transitions other than those occurring in 
triple recombination are included by a phenomenological method. In this case the kinetic and 
energy coefficients can be expressed in terms of the lifetime of the electrons against such 
transitions in the equilibrium state. The equations obtained make it possible to determine 
the electron temperature and the number of electrons in the conduction band in various non
equilibrium processes. 

1. THE KINETIC EQUATIONS FOR THE FREE 
ELECTRONS, INCLUDING EFFECTS OF RE
COMBINATION AND IONIZATION 

THE kinetic equations for the distribution function 
n of electrons or holes, including effects of their 
possible heating up, have the form [cf. e.g., Eqs. 

(3.1) ff. in reference 1] 

aiil - afio e - v -
(i[ + vr:;m0 + eEv 7h +me [Hxn1 ] + 7:n1 = 0. (1.2) 


