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In a viscous liquid with finite conductivity, the 
harmonic current with frequency w0 [in contrast 
to (1)} excites hydromagnetic waves with different 
frequencies w = ku1• The spectral distribution of 
the hydromagnetic waves radiated is determined 
from (18). 

Making use of the formula 

'() ]' 1 "' o X = Jill 1t a2 + x2 , 

it is easy to show that for v - 0 and a- oo, 

Eq. (18) goes over into (10). 
6. We now compare the intensity of the excita

tion of hydromagnetic waves by currents with the 
intensity of excitation of hydromagnetic waves by 
mechanical means, in which case, for a certain 
plane perpendicular to the magnetic field H0 ( the 
plane z = 0 ), the velocity of the liquid perpendicu
lar to the magnetic field is given by 

Assuming v, h ~ exp { - iw0 ( t - z/V0 ) } , and 
taking the liquid to be incompressible, we get, by 
(3) and (5), 

E = - J:__ [ v x n ] , h - • / 47tPo c • .., --v-;Lv. (19) 

The energy flow is determined primarily by the 
flow of electromagnetic energy 

I= ;1tRe [Ex h*]. 

Substituting this expression in (19), we get 

(20) 

A comparison of (20) with Eq. (12) shows that 
the surface current js is equivalent to a velocity 

Vo = V27tfl. /Po is/ c 

from the viewpoint of the excitation of hydromag
netic waves. 
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A new formulation of nonrelativistic quantum mechanics is proposed, namely a general defini
tion of the probability of any event. The physical content of quantum mechanics is reduced to 
a single principle similar to the principle of Gibbs; this makes it possible to solve problems 
without resorting to the use of wave functions and operators. 

THE idea that there may exist in quantum mechan- with the weight assigned by Gibbs. In quantum me-
ics a general expression for the probability ampli- chanics the role of the configurations is played by 
tude of any event is due to Feynman.1 These am- the paths of the particle; according to Feynman's 
plitudes are multiplied and combined like classical idea the probabilities are replaced by amplitudes. 
probabilities; this leads to the idea of constructing A simple and complete "atomistic" description is 
quantum mechanics according to the model of clas- obtained (see Sec. 8). 
sical statistical physics. In statistical physics the This program has not, however, been completely 
probability of finding a system to have some given carried out. According to Feynman, the amplitude 
property is equal to the sum over all configurations of any state must be the sum over all paths con-
having this property; each configuration is used sistent with the conditions of the experiment, but, 
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as is stated in reference 1 (Sec. 11), "which prop-
erties [of the paths] correspond to which physical 
measurements has not been formulated in a general 
way." 

This problem is solved in the present paper, but 
in a different way. We have to give up certain of 
Feynman's ideas. The question of a general ex
pression for the amplitude does not have to be dealt 
with, since, as will be shown below, something 
more is available - a general expression for the 
probability of any event. 

1. A FORMULATION OF QUANTUM MECHANICS 

Any experiment can be completely analyzed by 
means of the following rule: 

The probability for finding a particle possessing 
any given property is equal to the sum over all 
paths that have this property; each path occurs 
with the weight cos ( S/h); S is the change of the 
classical action along the path, and h is Planck's 
constant. 

The probability for finding a given value a for 
the physical quantity a { x ( t) } , which depends on 
the path x ( t) (a can be a coordinate, a velocity, 
the energy at a particular time, two coordinates 
at different times, etc.), is given symbolically by 

W (a) =~cos ~ df; (1) 
u 

J dr denotes the integral over all paths for which 
a 
a {x (t)} =a. 

If we specify the path by a succession of coordi
nates Xk and momenta Pk at times tk, and if 
tk- tk-t = Ek is much smaller than the character
istic time of the system, then 

(2) 

6 denotes the sum over all signs of the e:k; S is 
± 
the change of the action along the broken-line path 
with the vertices Xk, Pk: 

S ( ... XkPk ••• ) ~ ~ pvdxv = ~ Pk (xk- Xk-1)- H (pk, Xk) sk. 
k 

The integration is taken over the region 
a ( ... XkPk ... ) = a. All the paths begin and end 
at the times - T and T, and the index k runs 
through the finite number of values - N < k < N. 
For N - oo and T - oo .one gets all possible 
paths. It is assumed that the entire history of the 
particle is known, i.e., all macrofields. 

If the physical quantities are expressed in terms 
of coordinates and velocities (not momenta), the 

condition a ( ... XkPk ... ) = a is replaced by 
a ( ... Xk ... ) = a. We can integrate over all the 
Pk, and there remains a sum over purely spatial 
paths. 

Thus a simple construct (though one poorly de
scribed by usual notations ) - the sum over all 
paths, i.e., over all ways of realizing the event a 
- contains in itself all the principles and rules of 
quantum mechanics, and provides in general form 
a way of writing down the solution of any quantum 
mechanical problem. 

2. THE UNIVERSAL DISTRIBUTION OF PATHS 

Like the Gibbs distribution, the distribution (1) 
can in some measure be proved. 

We start from the classical ideas about the 
microscopic world. Particles move along paths 
x ( t), and each path occurs with a probability 
W { x ( t) } . Knowing W { x ( t)} , one can find the 
probability of any event a: 

W (a)=~ W {x(t)) dr. (3) 
a 

We assume that W { x ( t)} depends only on the 
change of the action along the path. In classical 
mechanics the sign of the action can be arbitrary; 
therefore W { x ( t)} = W ( S ) + W ( - S ) . For two 
noninteracting particles the probability must fall 
apart into a product of probabilities, i.e., we must 
have the relation: 

W (S1 + S2) + W (- S1 + S2) + W (S1- S2) 

+ W(-S1 -S2) 

= [W (S1) + W (- S1)J [W (S2) + W (- S2)]. 

From this we have W ( S) =cos aS, where a is 
a constant; comparing Eq. (3) with quantum mechan
ics (or with experiment) we get a = 1/h. The 
quantity cos ( S/h) can be negative (our assump
tions are in part untrue), but the probabilities 
measured in experiments turn out to be positive. 
These are probabilities associated with the meas
urement of commuting quantities, in which it is 
not necessary to take into account the reaction of 
the instruments. 

It is interesting that many formulas are sim
plified and "given meaning" (see Sec. 3) if we 
assume that the two signs of the action correspond 
to two ways of traversing the path (not at all re
lated to the actual direction of motion of the par
ticle along a path in the classical limit). 

Repeating the above considerations, we get 

W (a) = ~ eiSJhdf. (4) 
a 
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Here the integration is taken over directed paths, 
i.e., paths with different directions of traversal 
are distinguished. According to Eq. (4) the quan
tity exp [iS{ x ( t )} /h 1 is the formal probability 
(for short we shall call it the probability ) for the 
particle to pass along the path x ( t ), and 
cos [ S { x ( t)} /h 1 in Eq. (1) is the probability for 
finding the path x ( t). 

For the further discussion we introduce the no
tations: (xt- x't') is the sum over all directed 
paths (each with the factor exp iS) passing from 
x,t to x' ,t'; (xt"' x't') is the sum over all closed 
paths (each with the factor exp iS) passing 
through x,t and x' ,t'; (xt a x't') is the sum 
over all closed paths passing through x,t and 
x' ,t' and possessing the property a. 

3. THE PRINCIPLES OF QUANTUM MECHANICS 

To make clear the connection of Eq. (1) with the 
usual formalism, let us calculate W (x, t), the 
probability for finding the particle at the point x 
at the time t. This is the sum over all paths pass
ing through the point x at the time t; it can be 
obtained if we multiply the sum over all paths 
(each with the factor exp iS) arriving at the point 
x,t [we denote this sum by ¢(x,t)1 by the sum 
over all paths that come out from the point x,t. 
The second sum will be equal to the complex conju
gate expression l/J+ (x, t), since for each departing 
path there exists one just like it but oppositely 
directed. Thus W = 1/Jl/J+. As can be verified, the 
quantity 1/J satisfies the Schrodinger equation, and 
consequently is identical with the wave function, 
although the definition given above contains some 
arbitrariness and will be made more precise in 
Sec. 4. 

According to Eq. (4) 1/J (x, t) is the probability 
of arriving at the point x, t; 1/J+ (x, t) is the prob
ability of emerging from the point x, t; W (x, t) 
is the probability of passage through x, t, obtained 
by multiplication of the probabilities of these two 
events, which always appear together. 

Let us now calculate the average value of the 
momentum of the particle at the time t. Accord
ing to Eq. (2) 

and we now replace cos S by (eiS + e-iS)/2 
and set Ez = 0. Then 

p (tz) = ± ~ ~ (xz, tzjpzeipz<xz-xz_1)~+ (Xz-1, tz) dxtdpzdxz-t 

(5) 

+ Co~pl. = -2
1 (' ~ (x, t 1) ;_ aaq.+ (x, t 1) dx + Compl. conj. 

COnJ. J L X 

In a similar way one can show that Eq. (2) gives 
the correct values for the first powers of such 
quantities as momentum, energy, and angular mo
mentum. In calculating the average values of higher 
powers of most physical quantities, however, it is 
necessary to take precautions against possible in
accuracies associated with the replacement of con
tinuous paths by broken ones. In order that the 
value of the physical quantity f (x, p) at the time 
t shall not depend on the way the time axis is 
broken up into intervals Ek, one must replace 

t+E 
f(t) by lim f fdt; E-0, Ek-0, but € » Ek• 

€-Ot-€ 

Or, more simply, inside the interval ( t - E, t + E ) 
we take N intermediate time intervals tk and set 

1 N 
f =N :0 fk (fk is the value of f at the time tk)· 

k=i 

Then 

Here I tk- tk-1 1 remains of the order of mag
nitude of E, and the sign of the difference 
I tk- tk_1 I can be arbitrary. 

For N- oo there remain only those terms in 

( :0 fk) n in which the fk are taken at different 

times, but, as can easily be shown, for tk- tk_1 

the quantity J fk1 ••• fkn cos S dr becomes equal 

to J ¢+ (x, t) fn (x, - i8/8x) 1/J (x, t) dx. If Eq. (1) 

gives the correct value for all an, then the cor
rect value is also obtained for W (a). This can 
be verified by direct calculation of the probabili
ties (see Sec. 5). 

We note that since every measurement reduces 
in the final analysis to measurements of coordi
nates, it is sufficient that Eq. (2) give the correct 
value for W (x, t). 

We shall now show that (xt -x't') is the same 
as the propagation function of Schrodinger's equa
tion. Unlike the corresponding Feynman expres
sion, (xt- x't') contains paths with change of 
the sign of the time [because of the operation :0 
in Eq. (2)1. In the case in question, however, ± 

these paths make no contribution to the sum. 
In fact, let us compare (xt -x't') -the sum 

over all paths (each with the factor exp iS) con
necting the points x, t and x', t' without change 
of the sign of the time - and (xt 1 x't') - the 
sum over the paths connecting x, t and x', t' with 
a single change of the sign of the time at the time 
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t" (t" lies outside the interval (t, t')): 4. EQUIVALENCE TO THE USUAL FORMALISM 

(xt ___,. x't') = I (xt ___,. x"t") (x"i" ___,. x't') dx". 
l ~ 0 0 

As is well known, 1 the sum over the paths con
necting the points x, t and x', t' without change 
of the sign of the time is the propagation function 
of Schrodinger's equation, so that (xt 1 x't') = 
(xt 0 x't'). 

Let us now consider the probability of this event: 
at the time t0 a measurement was made of the 
complete set of quantities Li ( x, p) and they were 
found to be equal to the numbers Li> and the time 
t the quantity M1 (x,p) is equal to M1• The 
quantities Li form a complete set if W ( L1 .•• Lnt) 
comes apart into the product of two functions: 1/J, 
the sum over the paths arriving, and 1/J+, the sum 
over the paths departing. Let M2 ••• Mn be quan
tities that make a complete set together with M1• 

According to quantum mechanics 

W (Mrt I Lr .. · Lnt0 ) 

= ~ W (Mr ... Mnt I Lr ... Lnt0) dM2 ... dMn (6) 

G is the propagation function in the mixed L, M 
representation. Since G is the sum over all paths 
going from t0 to t, and a+ is the sum over all 
paths going from t to t0, W ( M1t I L1 ••• Lnto) is 
the sum over all closed paths (in the x, t space), 
for which at the time t 0 Li ( x, p) = Li and at the 
time t M1 ( x, p) = Mto that is, 

This formula makes it possible to solve both scat
tering problems and problems relating to stationary 
states. In the latter case W does not depend on 
t and t0• 

The closed paths in Eq. (7) have no special 
physical meaning; their appearance can be under
stood if one traces through the proof of Eqs. (7) 
and (1) presented in Sec. 4. The expression (7) 
does not mean that the particles move along closed 
paths. 

There is one further relation, similar to Eq. (7) 
and interesting from the point of view of a causal 
description. A comparison of W ( x, p, t) and 
W (x,p, t') as calculated from Eq. (1) gives 

W (x, p, t) = ~ (xpt ~ x' p't') W (x', p', t') dx'dp'. (8) 

The expression (1) is an obvious analogue of the 
Gibbs distribution; the number N (cf. Sec. 1) plays 
the role of the number of particles, but the depend
ence of the expression (1) on N for N -- co is 
completely different from that existing in statisti
cal physics. Because of this fact, problems arise 
in quantum mechanics that do not have to be solved 
in statistical physics. 

Let us go back to Eq. (1). Suppose that meas
urements of some kind are carried out; we must 
find the relation between them. The probability 
for each measurement to give a prescribed result 
is defined by Eq. (1), and at first sight is notre
lated in any way to the results of the other meas
urements. In actual fact, however, the integral 
on the right side of Eq. (1) is not completely de
fined. The time ranges from t = -co to t =+co, 

and the integral is infinitely manifold even for 
discrete time, so that it can be defined only as a 
limit of an N -fold integral for N -- co. It is easy 
to show by examples, however, that such a limit 
does not exist; the result depends on the assump
tions that are made about the positions of the final 
and initial points of the path. For example, one 
can assume that at the initial instant the particle 
is at the point 0, or that the particle can be at any 
point. 

In the general case the behavior depends on 
two functions which give the distributions of the 
initial and final points for the two possible direc
tions of motion: 

W (a)=~~ u(x) (x,- Ta x', T) u (x')dxdx' 

+ ~~ v (x) (x, - To: x', T) v (x') dxdx'. 

(9) 

Part of the measurements serves to determine 
the behavior as T goes to infinity, i.e., to deter
mine u and v, and the probability of the other 
results is calculated just from this limiting be
havior. The connection between the mean values 
with this approach agrees with the quantum-me
chanical results (see below), but the hypothesis 
that the behavior of the paths for t- ±co affects 
the results of measurement is, generally speaking, 
an abstraction. This is the quantum-mechanical 
form of Laplace determinism. 

In actual fact the past and future histories of 
the particle are unknown to us; from this point of 
view, the behavior at infinity is unimportant and 
one can fix on some single rule,'"for example the 
hypothesis that all particles appear from the point 
0 at the time - ® and disappear into this point at 
the time ®. In this case the probability of an event 
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is found to depend on unknown past and future 
forces. For definiteness we may suppose that a 
prescribed external field acts on the particles 
during the time interval ( - T, T ) , an unknown 
field X during the interval ( - ®, - T ) , and the 
field Y during the interval ( T, ® ) : 

W (a)= (0, - 8;;- 0, (1); 

8 -r r 8 

S = ~ Ldt = ~ L(X)dt + \ Ldt + \ L(Y) dt. (10) 
-8 -8 -T T 

To find the connection between observed quan
tities, one must use Eq. (10) to express them in 
terms of the unknown fields X and Y, and then 
eliminate X and Y from the resulting system of 
equations. The result again agrees with that of 
quantum mechanics, though the dependence on 
future forces seems rather strange. This depend
ence exists also in the classical principle of least 
action; if the coordinates of a particle are given at 
the times t1 and t2, then the value of a coordinate 
at a time t ( t 1 < t < ~ ) depends both on the past 
and also on the future history. 

This formalism can be somewhat simplified if 
we equate to zero the density of "sources" at t = ®. 
There remains only the sum over paths beginning 
at t = - ® and ending at t = - ®. In this case the 
probability depends only on the past history: 

W (a) = (0, - 8 a 0, - 8) 

-T -T -8 

S = \ L (X) dt + ~ Ldt + ~ L (X) dt. (11) 
-8 -r -r 

Thus the sum in Eq. (1) must be taken either 
over paths with prescribed behavior for T - ±co, 
or else over paths in a field of unknown past and 
future ( or only past ) forces. 

The agreement of the consequences of Eqs. (9), 
(10), and (11) with quantum mechanics can be shown 
easily by relating u, v and X, Y with the wave 
function. In Eq. (9) 

y (x, - T) = u (x) + iv (x) 

+ ~ (x,- T- x', T) [u (x') + iv (x')] dx'. 

In Eq. (10) 

y(x,- T) = (0,- 8-x,- T) 

+ ~ (x,- T -*X', T) (x', T--"- 0, 8) dx'. 

In Eq. (11) 

y (x,- T) = (0,- (:j ->- x, - T). 

Unknown forces and "densities of sources" 

exist also in statistical physics. For example, 
the statistical sum for a gas will be different for 
the cases of free and fixed piston. In statistical 
physics, however, the forces acting on the piston, 
or the probability of a given position of the piston 
are usually known, whereas in quantum mechanics 
they have to be calculated from the results of 
measurements. 

The operation of eliminating u, v or X, Y is 
in general complicated, but it is no more com
plicated than the elimination of lf! in quantum me
chanics. For example, the problem of finding the 
coordinate distribution at time t' for given coor
dinate distribution and momentum distribution at 
the time t is difficult also in the usual formalism 
(it is hard to find lf! at the time t ). Just as in 
the usual formulation, the problem is considerably 
simplified if part of the measurements gives a 
complete description of the state (this case in
cludes all known problems of quantum mechanic'S). 
Let us consider this case (for simplicity we take 
a one-dimensional problem). 

It is required to determine W ( M, t) = J cos S dr 

if it is known that M,t 

W (L', t 0 ) = ~ cos Sdf = o (L'- L). 
L', t 6 

To find W ( M, t) we go back to Eq. (1); this for
mula, however, depends on the unknown past and 
future history [or only the past, if we use Eq. (11)] 
of the particle, i.e., on X and Y. We need some 
sort of information about this history. We get this 
information from the condition W ( L'., t0 ) = o ( L'- L). 

In other words, we have two equations 

W(M,t)= ~cosSdf, ;;(L' -L) = \ cos Sdf 
lvl, t L',t 0 

[with S taken from Eq. (10) or Eq. (11)) from 
which we must eliminate the unknown forces X 
and Y. We obtain the conditional probability 
W ( M, t I L, t 0 ). 

We shall show that W ( M, t I L, t0 ) agrees with 
the expression (7). Let lf! (x, t0 ) be the sum over 
all paths that arrive at x, t0• According to Sec. 3, 

W (L, t) = ~ •V (x, t) o (L- L) y (x, t) dt. 

From the condition 

W (L', t 0 ) = ~ y+o (L'- L) ydx = il (L'- L) 

(this is a condition on the unknown forces or be
havior for T-±oo), weget: l/J(x,t0 )=l/JL(x,to), 
an eigenfunction of the operator L. Similarly, 
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Since 

w (M, t) = ~ ljl+a (M- M)ljldx 

= ~ ljl+a(M -M')IjldM' = !lji(M, t) 12 • 

ljl (x, t) = ~ (xt ~ x't 0 ) ljl (x', i0)dx, 

then ljl (x, t) = G (x, tIL, t 0). 

In the M -representation 1f! ( M, t) = G ( M, tIL, t0 ), 

so that 

W (M, t) =I G (M, tIL, i 0) j2 • 

In just the same way one obtains Eq. (8). Ac
cording to Eq. (1) W ( x, p, t) and W ( x, p, t') de..: 
pend on the unknown past and future history. Com
paring these dependences, we get the relation (8). 
One has to write out detailed expressions for 
W(x,p,t) and W(x,p,t'), drawthecorrespond
ing paths, and note that for t > t' the contribution 
to W (x,p, t') from the paths - oo--- t'--- t---oo 
is the same as that from the paths - oo --- t --- t' -
t--- oo. These last differ from the paths - oo --- t -
oo, which occur in W ( x, p, t), by the loop t --t' 
--- t. This loop gives (xpt ""x'p't') in Eq. (8). 

In practice, however, there is no need to use 
the general scheme; Eq. (7), which contains noun
known forces and densities, is sufficient. 

5. EXAMPLES 

The equivalence of the expression (7) to the 
usual formalism can be verified by examples. 

(a) A scattering problem. 
Let us calculate W ( p, t I x, t0 ) - the probability 

for the particle to have the momentum p at the 
time t, if at the time t0 it had the coordinate x. 
According to Eq. (7), 

w = (pt ~xto) =lim r (yt--->- y't + s) 
e~o) P 

\ iP(Y-Y') 
= ~ 2"' G (y't I xt0 ) a+ (yt I xt0 ) dydy' 

= [(27t)-'l• ~ e'PYQ (yt 1 xt0) dyj 2• 

(b) The distribution of the coordinate in the 
stationary state with energy E, W ( x I E). 

It is more convenient to consider a more gen
eral quantity, W(xtl Et'). This is the sum over 
all paths that pass through the point x at the time 
t and have the energy E at the time t'. 

Prescription of the energy means prescription 
of the average energy in an infinitely small neigh-

borhood ( t 11 tN) of the point t'. We denote the 
coordinates at the times t 1 and tN by x1 and 
XN. 

The more precisely written expression for W, 
with meaning clear from the notations, is 

x (xNtN ~ J.i) (xt ~ x1t 1) dx1dxN. 

Inside the interval ( t 1, tN) we choose N - 2 
instants of time 

and replace the continuous paths by broken lines 
with vertices at xk, Pk: 

W = j exp {if (pkflxk- Hkzk)} 
E-E 

The condition 
N N - 1"' 1"' E = N LJ H k = N L: H (pkxl<) = E 
1 1 

is now replaced by a factor ( 27T) -t J exp{iT( E- E)} dT: 

W = ~ exp {i-rE+ if [pkflXk- Hk (sk + 't/N)]} 

II dxkdpk d-r: 
X 27t (xNtN--->- xt) (xt --->- x1t1 ) z,: 

k 

= ~ eiTE (X1f1 ---'>- XNfN + 't) (XNfN ---'>- Xf) 

X (xt -+ x1t1) dx1dxNd't/2rc. 

Substituting in this the relation 

(xt--->- x't') = G = ~ 'Pt (x) 'PE (x') eiE(t-1'), 

E 

we get: W = I 'PE ( x ) 12• 

(c) Diffraction from two apertures. 
We have to calculate W ( x I x 0 ) - the probabil

ity of finding the particle at the point x if the 
source is at the point x 0 behind the screen. This 
is the sum over all closed paths passing through 
x and x0 (Sec. 7), each with the weight cos S. 
The paths for which the time direction does not 
change at the points of integration can be omitted, 
and there remain only paths for which the sign of 
the time changes at the points x and x0• 

The sum over paths falls into three parts: 

1 2 1 2 

(xo ~ x) = (x0 ~ x) + (x0 ~ x) + { (x0 ":;: x) + (x0 ":;: x)}. 
1 2 2 1 

The arrows represent the path, and the numbers 
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1 and 2 refer to the apertures. These three terms 7. COMPARISON WITH THE FEYNMAN FORMU-
correspond to the three terms of the quantum- LATION 
mechanical expression for the probability: 

6. THE PAULI PRINCIPLE 

We shall show that imposition of the Pauli prin
ciple is equivalent to the exclusion from the sum 
over paths of paths that have a common part tra
versed in different directions. 

Let us consider W (x, y, t I x', y', t') -the prob
ability of finding two particles at the points x and 
y at the time t, if at the time t' there were two 
particles at the points x' and y' . There are two 
possibilities: the transition x' ~ x, y' ~ y and 
the transition x' ~y, y' ~ x. The sum over 
paths breaks up into two parts, each of which sep
arates into the product of two sums over paths, 
i.e., 

W (x, y I x', y') = W (xI x') W (y I y') + W (x I y') W (y I x'). 

From this we must subtract the sum over all 
paths that have a common part. Suppose the two 
paths coincide on the transition l;,'T'-- l;,T. 

The path x' -- x -- I; - I;' - x', y' - y - I;' 
- I; - y' must be subtracted from the sum over 
paths. But this path comes in with the same con
tribution as the path 

x' ~x~y' ~ y-->-x'. 

(This becomes clear if one draws the correspond
ing paths.) 

Symbolically we can write: 

x' y' ~ xy = x' :(:::': x · y' +::': y + x' +::': y · y' +::': x- (12) 

- x' ~ x ->- y' ~ y -+ x' - x' ~ y -4 y' ---7 x ___,. x'. 

Since the sum over each of the transitions rep
resented by an arrow is the same as a quantum
mechanical propagation function, 

W (x, y I x', y') =I G (xI x') G (y I y')- G (xI y') G (y! x') 12 • 

This is the same as the quantum -mechanical 
expression (for Fermi particles). 

When we consider Bose particles the last two 
terms in Eq. (12) must be taken with the plus sign. 
If a boson is a bound state of two fermions, this 
rule can be explained. The forbidden paths will be 
subtracted for each of the fermions, and the twice
forbidden term comes in with a plus sign, but since 
the paths of the two particles must coincide, only 
this term remains in Eq. (1) (in addition to the 
main term). The minus sign in Eq. (12) is re
placed by a plus sign. 

The approach that has been presented differs 
from that of Feynman primarily as to results. The 
Feynman formula for the transition amplitude re
places only the Schrodinger equation, whereas 
Eq. (1) contains within it, in addition to the Schro
dinger equation, relations of the types W = 1/J+l/J, 

p = - iho/ax, and the whole theory of representa
tions. Equation (1) makes it possible to solve any 
problem, whereas the Feynman principle is insuf
ficient, for example, for the problems (a) and (b) 
of Sec. 5. 

We note that Eq. (1) cannot be obtained by sim
ple multiplication of the Feynman expressions for 
the amplitudes, since, firstly, a general expression 
for the amplitudes is not known, and secondly, even 
in the special case in which the amplitude is equal 
to 1/J ( x, t), multiplication of 1/J ( x, t), written ac
cording to reference 1 as a sum over paths, by 
1/J+ ( x, t) does not give the sum over all possible 
paths as is required by the meaning of Eq. (1) 
(see below). 

The limited nature of Feynman' s results is 
due to a lack of consistency in the description of 
the "quantum microscopic world", i.e., of such 
events as the passage of a particle along a pre
scribed path. Dirac2 has shown how, without con
tradiction, one can associate with each path a 
formal probability, and how this probability dif
fers from the square of the absolute value of the 
Feynman amplitude [this contradiction has been 
noted in a paper by Stratonovich, 5 where there 
are some indications of the existence of the for
mula (1)]. It can be shown (as will be done in 
another place) that the difference is due to a 
different definition of the concept "path of the 
particle," and that in sums over paths a path 
must be taken just in the Dirac sence, not in the 
Feynman sense. 

Thus it is necessary to abandon the belief in 
the deep physical meaning of the concept of am
plitude, as it exists in quantum mechanics and in 
reference 1. According to Eq. (1), not all proba
bilities separate into products of amplitudes. 

Another lack of consistency in Feynman' s 
treatment is the absence of paths with change 
of sign of the time, whereas the basic idea is to 
include all conceivable possibilities. No limita
tions at all are to be imposed on the path; they 
appear only after the averaging. It can be said 
in advance that in the majority of cases the paths 
with changing sign of the time will make no con
tribution in the nonrelativistic region, but inclu-
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sion of both signs turns out to be necessary, for 
example, to get the right value for the average of 
any function that depends on the velocity (if purely 
spatial paths are taken). Because paths with both 
signs of the time are absent in reference 1 the 
product of the Feynman 1/J and 1/J+ does not give 
the W of Eq. (1), but the 1/J defined in Sec. 3 dif
fers from that of Feynman, since in addition to the 
paths coming from t = - oo it contains paths com
ing from t = + oo, 

Whereas in reference 1 1/J ( x, t) = ( - oo-- xt), 
in Sec. 3 

~(x, t) = (- oo --+xt) + (xt +- oo). 

A further necessary addition to reference 1 is 
the refinement made in Sec. 4 of the concept of the 
sum over paths for paths going out to t = ± oo. In 
quantum mechanics wave functions are prescribed 
by the value of a complete set of quantities, and 
from this point of view it is not clear what wave 
function appears in the Feynman relation 1/J ( x, t) 
= (- oo-- xt). This is a purely symbolic expres
sion. In Sec. 4 it is assumed that such expres
sions depend on the way in which T goes to in
finity (or on an unknown history); this is equiva
lent to the quantum-mechanical dependence on a 
complete set of quantities. 

Furthermore, we get a logical source of the 
Feynman rule that in calculating vn ( v is the 
velocity) all the factors must be taken at times 
arbitrarily close together, but still distinct. By 
the meaning of Eq. (1), the sum must be taken 
over paths with arbitrary values of the higher 
derivatives at the point x, t, and such a sum is 
not obtained by the use of broken paths. In order 
for this not to affect the results, the instantaneous 
value of a physical quantity along a broken path 
must be defined as the average in an infinitely 
small neighborhood of the point t (just such quan
tities are measured in experiments ) . With such 
an approach a particle has at the time t both a 

l t+E 
coordinate x and a momentum p ['p = 2; J p dt, 

t-E 
E much smaller than the characteristic time of 
the system, but much larger than Ek in Eq. (2)]. 
As can be shown, the sum over the paths with pre
scribed x and p gives the Wigner3 distribution 
W(x,p). This distribution cannot, however, be 
used for the calculation of the average value of 
an arbitrary quantity f ( x, p), since generally 
speaking f(x,p)"' f(x, p). This is one of the 
objections against the statistical interpretation 
of quantum mechanics (cf. reference 4); it is re
moved if we suppose that what is measured is 

always f(x,p), and not f(x, p). 
Thus, unlike the situation in reference 1: 

(1) the probability of any event is written as the 
sum of formal probabilities (and not the ampli
tude as a sum of amplitudes, see beginning of 
paper); (2) paths with changing time direction 
are taken into account; (3) the peculiarities of 
paths receding to infinity are taken into account; 
(4) the special features of broken paths are more 
consistently treated. 

We note that certain amplitudes agree with the 
formal probabilities. For example, the probability 
amplitude for a particle to pass through x, t agrees 
with the formal probability for the particle to ar
rive at the point x, t. Just for this reason the am
plitudes have the properties of probabilities and 
the Feynman approach ( see beginning of paper) 
is correct in a certain region. 

The present treatment is also directly related 
to references 2 to 5, which are devoted to the sta
tistical interpretation of quantum mechanics, but 
its purpose and ideas are quite different from those 
of these papers. 

In references 2 to 5 it is shown how one can, 
within the framework of quantum mechanics, "re
store" the classical picture, if it exists. The dis
tribution of paths has been defined, firstly by the 
principles and rules of quantum mechanics, sec
ondly by the prescription of the wave function or, 
what is the same thing, by the prescription of a 
complete set of physical quantities. The idea of 
a universal distribution is absent ( if the history 
of the particle is known). 

Above, unlike in references 2 to 5: (1) the sta
tistical interpretation is used for the derivation of 
the principles of quantum mechanics (the approach 
is in a certain sense an inverse one to that of ref
erences 2 to 5; (2) the difference of the quantum 
distributions from the classical ( see beginning of 
Sec. 4) is interpreted in the framework of the 
statistical picture. 

Two considerations -the possibility of "in
verting" the exposition of quantum mechanics 
( with the Gibbs distribution as a model ) , and the 
calculation of conditional probabilities by elimina
tion of the unknown history of the particle - are 
basic to the present communication. 

8. CONCLUSION 

Equation (1) is of interest from various points 
of view. 

First of all, the logical structure of quantum 
mechanics is simplified and clarified. Beyond 
this, the reduction of all the principles of quantum 
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mechanics to Eq. (1) and the possibility of deriving 
Eq. (1) from simple and general assumptions about 
the physical world (this question is not discussed 
in the present paper ) may be of importance for 
possible generalizations of quantum mechanics to 
new domains. 

It can be expected that in the relativistic domain 
the language of possible classes of paths will turn 
out to be the only mode of description ( like the 
Gibbs distribution in statistical physics). For ex
ample, it may happen that there is a retarded in
teraction between particles that is not reducible 
to a field (cf. reference 1). In this case the proba
bility does not separate into the product of wave 
functions, the Schrodinger equation cannot be writ
ten, and problems can be solved only by means of 
Eq. (1). 

On the mathematical side, Eq. (1) broadens the 
domain of application of the functional integration 
( as compared with reference 1 ) , and there is a 
hope that in time simplicity and generality will 
appear not only in the way of writing the general 
principle, but also in the methods of solving all 
concrete problems. At present there are a few 
problems that are solved very simply by means 
of Eq. (1). 

Also of interest is the possibility of using 
Eq. (1) to carry over accustomed classical ideas 
into the microscopic world. True, a simple im
position of the probabilities on the the classical 
picture is somewhat hindered by the "negative 
probabilities," but everything that has been pre
sented can be translated in the most varied ways 
into the language of ordinary probabilities. It can 
be shown that the "negative probabilities" are in 
no way connected with the formalism of wave func
tions and operators and are not the cause of the 

sharp difference between classical physics and 
the canonical quantum description. The difference 
exists only in the means of describing mathemat
ically analogous objects (for example, ensembles 
of configurations in classical statistical physics 
and ensembles of paths of particles), and in the 
problems that have to be solved. 

It can also be shown that Eq. (1) bears the same 
relation to the canonical formalism that the Gibbs 
distribution does to thermodynamics (there is a 
precise and far-reaching analogy). Therefore the 
success of the atomistic (not phenomenological) 
approach may possibly repeat itself for Eq. (1). 
It is interesting that Eq. (4) can be united with the 
Gibbs principle, if one introduces a formal integra
tion over paths with a complex time and takes the 
change of the time equal to ih/kT ( k is Boltz
mann's constant and T the temperature). Equa
tion (4) will contain both the Gibbs principle and 
Hamilton's principle. 

In conclusion I thank' V. Ia. Fainberg for direct
ing this work and for helpful advice. 

1 R. P. Feynman, Revs. Modern Phys. 20, 367 
(1948). 

2 P. A.M. Dirac, Revs. Modern Phys. 17,195 
(1945). 

3 E. Wigner, Phys. Rev. 40, 749 (1932). 
4 J. E. Moyal, Proc. Camb. Phil. Soc. 45, 99 

(1949). 
5 R. L. Stratonovich, J. Exptl. Theoret. Phys. 

(U.S.S.R.) 32, 1483 (1957), Soviet Phys. JETP 5, 
1206 (1957). 

Translated by W. H. Furry 
17 


