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Collective oscillations of electrons distributed with periodic density in a lattice are considered 
as quasi-hydrodynamic oscillations of a degenerate non-uniform gas of electrons. Properties 
of the various levels are analyzed and the probabilities of exciting collective oscillations by 
light and by charged particles are calculated. Quantitative estimates of the position of the 
levels are compared with data concerning characteristic losses of electrons in thin films. 

1. INTRODUCTION 

ATTEMPTS have been made to apply the theory 
of collective oscillations of a plasma to the valence 
electrons in a crystal by considering them as a de­
generate Fermi gas (see, for instance, the review 
article by Pines 1 ). At the present time it is not 
clear whether such oscillations, "plasmons," are 
stable enough to be considered as actually existing. 
There is no doubt that the lifetime of a plasmon is 
small, and the probability that it will be converted 
to the excitation of separate electrons and to ther­
mal motion is large. However, the successful in­
terpretation on this basis of certain characteris­
tic energy losses of electrons passing through 
solid films 1 obliges us to direct ourselves seri-
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a - Form of the oscillations for even !0 , !0 ~ 0. For k ~ 0 
only the term l ~ 0 appears; p belongs to the type p1 ~Po (s)­

in neighboring cells the function is the same. For kd ~ TT 

principally the term l ~ 1 is represented; p belongs to the type 
p,(s)- in neighboring cells the functions differs in sign, 
exp (ik ·d) ~ - 1. b- Form of the oscillations for odd !0 , [ 0 ~ 1. 
For k ~ 0 only the term l ~ 1 appears; p belongs to the type 
p ~ p,(a) - in neighboring cells the function is the same. For 
kd ~ TT principally the terms l ~ 0 and l ~ 2 are represented; 
p belongs to the type p0(a) and p2(a)- in neighboring cells the 
functions differ in sign. 
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ously to the problem of the collective oscillations 
of electrons in crystals and, above all, to attempt 
to broaden the circle of phenomena under study 
which are connected with plasmons. 

The theory of collective oscillations is applied 
to crystals in a quite elementary way .1•2 For a 
uniform degenerate gas of free electrons the fol­
lowing dispersion equations are used: 

(1) 

where w, k are the frequency and wave number 
of a plasmon; < v2 > is the average square of the 
thermal velocity of the electrons, 

; o 3 2 3 (3 )'/ h 2 '/, ',v-i = 5 Vmax = -.) 7t 'm2 Po ; 

Po is the average number density of the electrons; 
e is the charge and m the mass of an electron. 
The relation (1) and the condition of its applicabil­
ity were obtained from a kinetic equation. 3- 5 It 
was shown that the quantum correction is small.3 

This relation is valid (or, a plasmon exists ) so 
long as the plasmon wavelength is sufficiently 
large in comparison with interelectronic distances, 
and therefore the term < v2 > k2 in ( 1) is small in 
comparison with w~, which leads to the conditions 
k ~ kc "' pl/6• This is a strong condition, because, 
in the othe~ direction, the effective wavelength can 
not be materially larger than the lattice constant 
(see figure a below). Consequently the success 
of all ideas can be charged in large part to a favor­
able relation between the numerical coefficients. 
If the condition derived above is violated, the mo­
tion rapidly breaks up into individual excitations 
of electrons, so that if indeed plasmon levels exist, 
they ought to be very broad. 

In reality the positive charge in a metal is not 
spread out as in a plasma. Furthermore it is nec­
essary to take the constitution of the atom into ac-
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count by one means or another. Up to the present 
time this has, in fact, not been included in the 
theory but has been dealt with on a different basis. 
One considers the atom only as the source of a 
periodic field, or else, proceeding from semiqual­
itative considerations, assumes that in certain 
cases, that of Cu, for instance, one must under­
stand by Po in (1) not only the valence electrons, 
but should add to these a certain number of elec­
trons from the shell - for Cu, for instance, three 
times the number of valence electrons, etc. 

The problem obviously consists in studying the 
collective behavior of all of the electrons of the 
crystal (including the ionic group) from a single 
point of view, and the theory itself ought to show 
what part of these participate effectively in a plas­
mon. The goal of the present paper is to study 
this question, although only very roughly because 
of the roughness of the approximation of collective 
oscillations. 

A study has already been made of a plasma in 
a periodic field on the basis of a classical kinetic 
equation, in the approximation of a weak periodi­
city, for a gas of valence electrons. 6 ( For an in­
teresting application of the theory of collective 
oscillations see also Ref. 7). This investigation 
does not include the ions and is unsatisfactory for 
our purposes. 

2. KINETIC EQUATION METHOD 

It is a simple matter to write down the kinetic 
equation for the electron distribution function 
f ( r, p, t) for a non -uniform density if one takes 
into account the external field created by the 
atomic nuclei. It is possible to start out from the 
quantum kinetic equation. 3 However, the quantum 
corrections are small even for electron interac­
tions, and for a gradually varying nuclear field it 
is known that one can use the classical approxi­
mation, so that the external field U ( r ) enters 
only in the form \7rU · Y'pf (where r is the co­
ordinate, p the momentum). As usual, we put 

f = t<o) (r, p) + f(ll (r' p, t), I f<Il I ~./(o) 

Now f(O) depends on r, although comparatively 
weakly. Consequently the difference between this 
case and the case f(O) = f(O) ( p) boils down to the 
fact that we have to understand U to be the com­
bined potential of the nucleus and the undisturbed 
distribution of the electrons, satisfying the equa-
tion 

\j2U = - 47tpo, Po=~ f(o) (r, P) dp. 

We now carry out the transition from the distribu­
tion in multi-dimensional space to the single-par-

ticle approximation: 

f(l) (r1, P1; fz, Pz; t) = f1 (ri, PI• t) fr (r~. Pz, t), 

which is equivalent to the Hartree approximation, 
to which, as Wolff has shown,8 the theory of plas­
mons corresponds. 

From the kinetic equation for f1 ( rl> Pi> t) it 
is possible, following Silin, 3 to go over to the 
"quasi-hydrodynamic approximation," in which 
the first moments of the desired distribution are 
studied: 

~ f IPtdp, 

A system of equations is obtained for these mo­
ments, and the succeeding moments are ignored. 
This system cannot be simplified as readily as for 
a uniform plasma, 3 but one general property of its 
solution - that of periodicity - is important for 
us. 

For the case of electrons in a crystal, a system 
of equations is obtained which is linear and homo­
geneous, with coefficients which have the periodi­
city of the lattice. Consequently one can verify 
that the solution of this system, for instance the 
excess density, has the form 

Pr (r, t) = eikrPrk (r, t), (2) 

where Ptk ( r, t) has the period of the lattice and 
k = ( 27mx /Lx, 27my /Ly, 27mz /Lz); Lx, Ly, Lz 
are the dimensions of the unit cell, and nx, ny. nz 
are integers. As a matter of fact, all of the usual 
arguments which enter, for instance, into the Bloch 
theory for the wave function of an electron in the 
periodic field of a crystal, are applicable here. 
The solutions form a complete orthogonal set of 
functions of the characteristic oscillations, num­
bered according to the index k, and the indices 
of the states p1k, determined from the solutions 
inside the cell. It is obvious that the question of 
the stability of these new plasmons remains un­
solved here also. 

3. HYDRODYNAMIC APPROXIMATION 

Many of the following results require only a 
knowledge of the above-mentioned property of 
periodicity of the functions (2). However for the 
sake of concreteness, it is convenient to have a 
method, even though a very approximate one, 
which would permit one to carry out the calcula­
tions to the end. The method of hydrodynamics 
is one of these. 9 In solving the hydrodynamic 
equations for an electron gas with Coulomb forces 
guaranteeing a collective interaction, one can 
take account of collisions and of thermal motion 
in the term J dp/ p ( p is the pressure) for the 
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corresponding equation of state. It is known 
that this method gave in the classical case an 
incorrect coefficient of Y3 in the correction term 
<v2>k2 of (1).3- 5 In the case of a uniform degen­
erate Fermi gas, this method gives a coefficient 
of % in the correction term [see Ref. 10 and Eq. 
(14) below], which is closer to unity but is still 
not correct. 

The principal equations for a non-uniform de­
generate electron gas, neglecting the retardation 
of the interaction, were written down long ago by 
Bloch, 9 who made a partial study of their proper­
ties for the case of an atom, although he was not 
engaged in looking for a solution. We will take 
advantage of this approach for the more general 
problem. 

For plasmons in a crystals, the accounting for 
the retardation may be essential. 

In the linear approximation with respect to the 
velocity u, for p = Po + Pt. IPtl « Po• taking 
account of the fields E, H of the electrons them­
selves and the external fields E(e), H(e), we have 
the following system of equations (the quadratic 

term ( ~ u x H) is dropped): 

ap, ct· ( ) 7fi = - IV PoU , 

m 8~- =-v (Dp1)- eE- e {E<e>+ [+ u x u<e>]}, 

~ ~ (~ 7ft = 47tp0u + ccurl H, 7ft = - c curl E. 

Here the term - \7 ( Dp1 ) arose from the decom­
position 

Po Po+Pl 

\ !P_ =I !P_ + \ !P_ =(\!!E._) + Dp1 , 
.J P ~ P ) P \ ~ P P ~Po 

Po 

(for a uniform Fermi gas D = 5m < v2 > /9p0 ). 

The quantity p1 which, like u, is real, gives 
the quasi-classical approximation to the density 
matrix; consequently in a system of n particles 
with unperturbed wave functions lJ!{O) and a per-
turbation lJ!{1): J 

J 
n 

n 

P1 = S (~jo)*~jl) + ~jll*~jo)). (4) 
i~l 

Let us study the free oRcillations in the absence 
of an external field. 

The energy of the oscillations is 

(5) 

Here and in what follows the index 1 in p 1 is 
dropped. 

We introduce a four-component quantity whose 
first component is a scalar and whose remaining 
three are vectors (thus in fact we have a ten­
component quantity ) : 

G = (G(l), G( 2), a<a>, G(4)) = (p, u, E, H), p = VD(r)r). 

u'=Vmr;o(r)u, E=E/V4TC, H=H/V4rr. (G) 

If then, with a view to what follows, we multiply the 
system of equations (3) by i, we can write them in 
the form 

. aG LAG = 1 \ G"d 
t -at = ' :Ju = 2 .\ - r, (7a) 

4 4 

G1G2 --- ~ Gi")O'';'. LG = ~ L <~.~) a<~l, w~ (r) 
a~l ~-1 

0 - VDv J! -~- 0 0 

L(x,p= 
- VPo vD 

m 0 - Wp (r) 0 

0 wP (r) 0 ccurl 

0 0 - ccurl () 

(7b) 
Thus i is a self -adjoint operator. We split all 
real quantities into two parts: 

G = ~ (GAe-i"'iJ + G~eiwAt ), 
A 

so that for p, for instance, we have 

~ ( ( ) -iw) I * { ) iO>)J ) p = .LJ pA r e · + pA r e . 
A 

(8) 

(9) 

It is clear that if PA corresponds to a transi­
tion with the absorption (emission) of a quantum 
tiwA., then p~ corresponds to a transition with 
the emission (absorption) of a quantum. In deter­
mining by any manner the real oscillation of 
p ( r, t) with the frequency w;>v we can split it 
up into two parts, corresponding to (4), and con­
sider PA. and p~ as the quasi -classical approxi-

mation for "' 'l!~o)* 'l!~t) and "' 'l!~o) 'l!~t)* in 
L.JJ J L.JJ J' 

order, for instance, to use them in quantum-me­
chanical calculations of different proce~ses. 

For GA. there occur the equations 

(10) 

Thus by using the self-adjointness of operator 
L and the anti symmetry of the real operator - iL 
one can, by the usual method, obtain the properties 
of orthogonality and normalization. 

The value of the constant of normalization is de­
termined from the requirement that the energy of 
an oscillation with a certain frequency wx is equal 
to tiwx· Substituting one term of the sum (8) into 
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JC (7) we obtain the normalization conditions: 

~ o;.o,, dr = t,w,'On,, (lla) 

~ o;o;,,dr = ~GiGi-'dr = o. (llb) 

If the GA are understood to be quantities, al­
ready normalized, which form a complete set of 
functions, then an arbitrary state is determined by 
the set of coefficients a;\ in the expansion 

G (r, t) = ~ (a,G~.e-i"'iJ + a;G~i"'' 1 ), (Sa) 
"A 

so that the energy turns out to be 

:Jt = ~I a"A 12 ttwi.· 
"A 

(12) 

Thus for a uniform plasma, in which Po = const, 
Wp = const, we have "free plasmons:" 

p = pkei(k•r-wll U = U~;ei(k·r--wl), ( 13) 

etc. Substituting into (10) and (12) we find two 
types of solutions: if w2 = w~+ c2k2, then H = 
(c/w) (kxE), E = imwu/e (transverse waves), 

u" = V2rcfte2 / (mwV), Pk = 0. (14a) 

If however w2 ;.ow~+ c2k2, then H = 0, E = 
imwu/ e, k · u = ku (longitudinal waves ) , 

w2 = w~ + s;9 (v2) k2, 

V 21tne 2 w kp0 1 / nk2p0 ( 14b) 
uk = mwV "'P , Pk = (;) uk = r 2mwV , 

where V is the normalization volume. The dis­
persion relation obtained by this method has an 
incorrect factor of% in the correction term. 

CHARACTER OF THE FUNCTIONS FOR A 
CRYSTAL 

In a crystal, p, u, E, and H have to be deter­
mined from a numerical solution of (10), where 
p0, within the limits of one cell, is taken according 
to the Thomas-Fermi method. Po has been deter­
mined many times for different elements and dif­
ferent degrees of compression (see Refs. 11 and 
12, for example). 

We will use the cell method, 13•14 which was de­
veloped and used to find the wave functions of elec­
trons in crystals. If we make use of the continuity 
of the functions and their derivatives in going 
across the boundaries of the cells, in conformance 
with the condition of periodicity (2) (which is valid 
for all components of G), we can write the follow­
ing boundary conditions, for example, for p: for 
any point r 0 the surface of the cell has to be14 

where d is a vector connecting the two opposite 
faces of the cell. We will set d equal to the lat­
tice constant. o/on is the derivative taken normal 
to the faces. 

If we consider wav~s having the character of 
longitudinal waves [and going over to longitudinal 
waves for Po- const; see (14b) ], we can neglect 
retardation and set E = - grad <I>. In this case the 
coefficients of (10) in each cell will have spherical 
symmetry and a solution inside the cell can be 
sought in the form of an expansion in the spherical 
functions Yzm ( J., qJ ) (normalized to unity), 

p = ~ a1m (k) PI (r) Y1m (lhp), 
l.m 

(16) 

in which we assume that the polar axis is directed 
along k. For m ;.o 0 waves appear which have the 
character of transverse oscillations and go over to 
transverse electromagnetic waves for Po - const 
in a uniform plasma (14a). Generally speaking it 
is no longer possible here to ignore the magnetic 
field of the waves and the retardation. However, 
the waves which most interest us are those having 
principally a longitudinal character, that is, con­
taining a weak admixture of terms with m ;.o 0. 
Consequently we will consider that the average 
field of distant cells is small in comparison with 
the field 

\ p (r') ' E = -grad CD, CD=- e .l I r _ r' 1 dr , 

so long as the azm for m ;.! 0 are comparatively 
small. Since p(ro- d)= 2::) azmPZ(ro) X 

Yzm ( 7r -J., 7r + qJ) = 2::) azmPl ( ro) ( -1 )lYzm ( J., qJ), 
then (15) has the form 

~ azm (k) pz(r0){ 1 - (- 1 )1 eik·d} Yzm (&cp) = 0, (17a) 
lm 

~aim (k) ap~~ ol {1 + (- 1 )I eik·d} Y lm (&cp) = 0 (17b) 
lm 

for all J. and qJ (r0 = r 0 (J., qJ)). As we see, prin­
cipally the states with k = 0 are important for us. 
In this case there remains in (17a) only a sum over 
odd l, in (17b) -over even l. Consequently for 
k = 0 any solution Pl ( r) Yzm ( J., qJ) of (10), taken 
by itself, will satisfy the conditions (17) if we sub­
ject Pl to the requirement Pl ( r 0 ) = 0 for even l 
and to the requirement Pl ( r 0 ) = 0 for odd l. We 
note that for any l the radial equations, for in­
stance for pz, have in general many solutions dif­
fering in their "radial quantum number" nr; how­
ever it is apparently necessary to take only the 
lowest of these into account, since the remaining 
ones will correspond to too large a gradient of p, 
for which it is already known a plasmon cannot 
exist and breaks up into individual excitations of 
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electrons. 
Those solutions with k = 0 form a basis. For 

k ;.c 0 each of these generates its own branch of 
solutions. Thus if kd « 1, then expanding 
exp ( ik ·d) in a series and keeping only the first 
terms, we can seek a solution in the form of a 
sum of several first harmonics with coefficients 
a~omo ( k), where the new indices lom0 indicate 
to Which branch the solution belongs,.or which 
harmonic remains when k - 0. It is easily shown 
that, if for k = 0 a certain a~~o is different 
from zero (and equal to unity), we find that for 
k ;"' 0 the adjacent harmonic will have azm ( k) "' 
kd, the next one azm (k) "' (kd)2, etc. 

Let us for simplicity replace the cell by a 
sphere, r 0 = const, for example. We will study 
the case l 0 = 0, a~~ ( 0) = oz0, i.e., the branch 
arising from the state l = l 0 = 0. We will look for 
p in the form of a linear combination of the three 
first harmonics, all with m = 0: 

2 

Pk (r) = ~ a1o (k) p)s> (r) Yto (-&cp) (18) 
t~o 

(the index s indicates that p has to satisfy a 
"symmetrical" boundary condition pjs)' (r0 ) = 0). 
Condition (17b) drops out here. It is impossible to 
satisfy (17a) for all J, cp, however. We satisfy it, 
for example, (a) for J = 0, (b) on the average over 
the sphere. Here, in calculating the normalization, 
all three coefficients al0 are determined; it turns 
out that for kd > 0, a~0 decreases; a~0 increases, 
at first linearly with kd, while ag0 increases 
quadratically. For kd = 1r only a~0 is different 
from zero [in this approximation see Eq. (18)], 
then it decreases and for kd = 71"/2 the second 
harmonic is maximum. 

Let us now study the branch which for k = 0 
starts with the state l = 1, m = 0, ~hat is aJ~ ( 0) 
= oz1omo· Proceeding similarly, we imagine Pz = 

pt> to be of an "antisymmetric" type, pt> ( r 0 ) = 
0. It is clear that here the functions have more· 
nodes, and the energy of this state has to be con­
siderably larger than for l 0 = 0 (as is substanti­
ated by a calculation; see Sec. 8). For small k, 
a~~ decreases as kd, and a~~ and a~~ increase 
linearly. For kd = 11" al~ vanishes, and a~~ and 
a~g have the same order of magnitude. If one does 
not replace the cell by a sphere, then the genera­
tion of longitudinal waves with m = 0 becomes 
generally impossible. For all orders of ( kd) 2 ,.... 

d2/:>.. 2 , transverse waves are mixed in with waves 
having a longitudinal character, and conversely. 

We obtain the solution in another cell with in­
tegral indices v = ( vt> v2, v3 ) by multiplying the 
solution found in one cell by an exponential factor. 

Introducing for normalization purposes the factor 
N-1/l, where N is the number of cells in the nor­
malization volume V [ Pln is normalized inside 

r 
the cell in conformance with (lla)], and writing 
out all the indices, we have 

lm 
(19) 

where ni denotes the combination of indices of 
an "internal state" in the cell, ni = ( nr, l 0, m 0 ), 

that is it indicates to which branch the solution 
belongs, and the index Pni denotes the type of 
boundary condition for p: for even l we have 
Pni = s, p'(r0 ) = 0; for odd l 0, Pni =a, p(r0 ) 

= 0. All that has been said has to be repeated 
for the remaining functions o(a), for which all 
the indices of the different functions o(O!) coin­
cide. In practice we do not take the index nr into 
account (see below). 

The nature of typical solutions is shown sche­
matically in the figure. The solution for k = 0, 
l 0 = l = 0 formally is in conflict with the condi­
tion J pdr = 0; however this condition would be 
fulfilled for a k different from zero but arbitrar­
ily small. If one goes over to a uniform plasma 
p0 - const, then this solution goes over to the 
usual longitudinal oscillations. The reduction of 
p to zero in the center of the cell is related to 
the fact that oscillations of arbitrarily small en­
ergy do not penetrate into the depth of the atomic 
shell. 

These collective oscillations have essentially 
the character of excitons. An excitation inside 
one cell (also representing a collective oscilla­
tions) is propagated in the form of a wave through­
out the entire crystal. 

5. EXCITATION OF THE OSCILLATIONS 

If a system of solutions is known for a crystal, 
then the change of state under the influence of an 
external field can be found by the usual method. 

In the presence of an external electric field 
E(e), equation (3) can be written in a form corre­
sponding to Eq. (7a): 

. aG , 
t Tt =LG + K, 

-K = (o;- 'i:2 E(•>; 0; o). (20) 

Usually the external field is periodic, with a fre­
quency w0• We resolve it into components of the 
type exp ( - iw0t) and exp ( iw0t), which give rise 
to corresponding components in G, and study one 
of these components, for instance G ,.... exp ( - iw0t). 
We expand the desired solution in terms of the 
basic system of functions -the solutions G~o) of 
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Eq. (10): 

G =] aA (f) e-iwAt G~o) (r). 
A 

(21a) 

Substituting in (20), multiplying by G~o)*, inte­
grating over space and using (lla) we obtain 

d i ~ G(O)* I( ( f) d iw) t dt a A = - 1tw. · A r, re · . ,, (21b) 

Let K = K(o)( r) e-iwot. Integrating from the initial 
condition a71. = 0 for t = 0 we obtain: 

I=- 1t~A ~ G).o)* (r) l((o) (r) dr ==I 1 +I 2 , 

ie (' • ie \ * I 1 = -IC jp0uAAdr, I 2 = T .)pA<Ddr, 
(22) 

where E(e) is expressed in terms of vector and 
scalar potentials, E(e) = -V<I> -A/c. 

According to (12) the weight of the state 71. at 
the instant t is Ia:\ (t)l 2• The probability of tran­
sition to this state per unit time is 

WA=Iim :t lai.(t)l 2=2rr!I1 +I212 8(cuJ.-cu0 ). (23) 
t~ co 

6. INTERACTION WITH LIGHT 

Let us study the absorption of light. For m 
quanta in the volume V let 

<D = 0, A= A0 exp (i (k0·r- cu0i)), A~= 2rr1icu0m /Vk~. 
We assume that A0 is directed along the z 

axis, A0 = Ao grad z. Using the first equation of 
(3), we have 

Hence according to (19): 

(24) 

X I] N-'f,e"(k,-'-k,v)d] al;:'• (k) ~ p; Y~m (-9-cp) ik,r r cos -&drl2 

1 v lm 

where the integral is extended throughout the vol­
ume of one cell. Since 

~ exp [i (k0 - k)·vd] = Nokk,, 

and, for light, for nw0 = tiw71. ,.... 5 to 30 ev, k0d « 1, 
then the exponential factor in the integral can be 
dropped. Consequently, just as for ordinary exci­
tons, a plasmon is excited with a k that is prac­
tically zero. Only dipole oscillations with l = 1 
give a contribution For k = 0 such oscillations 
are present only if l 0 = 1. Energetically this 
branch is situated below the branch l 0 = 0. Sub­
stituting the value of A0, multiplying by the num-

ber of initial photon states ( 27T) -a Vdk0 and intro­
ducing the spectrum of the incident light 

So ( cuo) dwodQ. erg·cm-•sec-1 = m c1icu0 (2rrt3 dk0 , 

we obtain, after integration over w0, the follow­
ing expression for the total absorption of energy 
per unit time, nw0W = S: 

Serg/sec =N3rr;c· cuoSo(cuo)dQ.Io~· ri"(r)r3dr 1
2

laitm"(O)I2 • 

(25) 

Thus only transverse oscillations with l = 1, m = 
0 can be excited (we recall that here the z axis 
is directed along the field A0, and not along k, 
as in Sec. 4 ) . If we designate 

/ 4; ~· p1 (r) ~ r 2dr I =neff , (26) 

(the effective number of oscillating electrons), 
then S takes the usual form 15 for the absorption 
of light by N atoms, for each of which the effec­
tive square of the matrix element of the coordinate 
is 

(27) 

However such an absorption indicates that it 
1 

takes place very rapidly: setting N = d3 T~. 
where T is the width of the crystal and ~ is the 
area of the surface being irradiated, we find for 
the ratio of the intensities of the incident and ab­
sorbed light ( r 0 ,.... d): 

S e2 w0 T 
8 0 dw0 dOL. ~ fie dw0 d · 

Thus even over a distance much smaller than 
137d ..... c/ w0 ..... 1/k0 the absorption will be total. 
Consequently even on the surface of a crystal a 
light wave very rapidly goes over into a trans­
verse plasmon wave, in which the principal com­
ponent of p is a dipole oscillation (in each cell) 
in the direction of the external electric field. Ac­
cording to the statements made in Sec. 4, there 
will be present in this oscillation, with a relative 
weight ( k0d )2 ,.... ( e2 /tic )2, an added wave with 
l 0 = 1, l = 0, for which the average value of p 
will not vanish, i.e., a wave of longitudinal type. 

7. EXCITATION BY FAST CHARGED PARTICLES 

Let a particle with charge e., mass M, mo­
mentum Po and energy E0 = n2p~/2M strike the 
crystal, and as the result of exciting a plasmon 
make a transition to a state with momentum Pf 
and energy Ef. This will produce a charge den­
sity for the transition, expressed in terms of the 
initial and final wave functions of the particle, 



786 E. L. FEINBERG 

tf = v-'/,i(P•r-Et)!Ji. 

There will arise a perturbation potential 

<I> = e1 ~I r ~~. 1 ~J~; (r', t) ljl0 (r', t) 

4n;e1Ji2 e t (Po-Pj• r)-i"'oi 

(28) ( e2 /lie) -./mc2/E0 • Setting exp (i k·r) 1:::1 1 + i k·r 
and directing the z axis along k we obtain the 
probability of exciting a plasmon with a given k, 
l 0, and m 0 (integrated with respect to the angle 
() between k and v 0 ): 

VI Pf- P0 12 
(29) 

Here 

nWoj = Ej- Eo= Von I Po- PJ I cos e, 

v 0 = (Pf + p0 )/2M is the average particle velocity, 
which for a fast particle is the same as the initial 
velocity, and () is the angle between the outgoing 
momentum and v 0• 

Substituting q. into (22) and (23), one can split 
up the integral over the whole crystal into a sum 
(over v) of integrals over the separate cells, 
since p differs from one cell to another only by 
the factor exp ( i k·JI d), The sum gives lik0 = 
Po - Pf, and after multiplying by the number of 
final states ( 21r) -a V dk or ( 21Th) -a V dpf and in­
tegrating with respect to k or Pf we obtain 

W = 4N ~2e2 ~dk: o (w (k)- kv 0 cos fJ) l ~ elk·rp' (r) d r 1
2

, ( 30) 

where the integral over r is taken within the lim­
its of one cell. 

For the case of a uniform plasma we substitute 
p from (13) and (14b) (here V has to be replaced 
by the volume V /N of one cell) and obtain 

lie 1 

e2w \ dk \ W=T ~-fi2 jdcosfJo(w(k)-kv0 cos8) 
0 -1 

(31) 

where we have ignored the difference between Wp 
and w ( k). This is the usual formula, which has 
also been obtained by other methods .1 

For the case of a crystal the integral over the 
cell in (30) has the form 

~ e--ik•r ~ a!~m, (k) Pi' (r) Y lm (it ,cp) d r. 
lm 

We will restrict ourselves to a study of such 
small k that kd « 1. Since, as is apparent from 
(31), the upper limit in the integral with respect to 
k appears logarithmically, we can ignore it for a 
small portion of the scattering of the order of 
ln (kc/kmax)/ln(kcv0 /wp)· ForM= m (excita­
tion by an electron) 

kcvofwp ~ Vn2 Eofme4 ':?;> 1. 

We will exclude it from a consideration of very 
large angles of scattering: probably cos e > 

2 2 --2 

X {1 al,m, (kfPT."I2 + "'1'o I al,m, (k) Pz,_r_ I}. (32) 
oo o 3v~ 10 l r 0 

Here the term with sin2 () is dropped in compari­
son with cos2 e = w~ /k2v~ and it is considered that 
in the term o ( w ( k) - kv0 cos ()) it is in general 
necessary to write wz (k) in place of w (k). The 
bar on top denotes an :veraging over the cell. 
Hence, only longitudinal waves with m = 0 are 
excited. The first term in the brackets corre­
sponds to an ordinary longitudinal plasmon (the 
average density does not vanish), the second to a 
longitudinal dipole oscillation in the cell. Since 
small k play a role, the first, principal term 
appears if l 0 = m 0 = 0, that is if a plasmon is ex­
cited in the lower band. But a non-vanishing p 
can also be involved in oscillations with l ""- 0. 
Thus for small values kda~fO( k) ..... kdaHR~( k) 
(see Sec. 4). Hence for l 0 = 1 this term is ( kd )2 

times smaller than the principal term. It is pos­
sible to write 

{ } = {1· aoo -po j2 0 0 + k2 d2J a1m;;-p1-j2 0 
00 0 l,o m,o 10 0 1,1 

(32a) 

The role of the different terms for different k 
depends essentially on how k enters into the nor­
malization factor. For a uniform plasma the first 
term in curly brackets is equal to 31i.k2p0 / ( 2mr~wp). 
Thus one can set 

I oo (k) o-12 = l__ Jik2 Po eff b 
aoo Po- a 2m "' 0 ' 'o o 

where b0 is a number of order unity, and Po eff 
can be considered equal to Po ( r 0 ). Then for the 
lower band the total probability is 

The excitation of higher levels for longitudinally 
polarized dipole oscillations ( l 0 = 1, m 0 = 0), if 
they exist, can take place with a probability of or­
der ( kd )2 relative to the probability of the princi­
pal process, in the form of characteristic losses 
for scattering through large angles (), in which 
the following relation ought to be satisfied: 
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8. QUANTITATIVE ESTIMATES 

It is possible to estimate the energy of a level 
by using, for example, a variational method for an 
almost-longitudinal plasmon, when the retardation 
of the interaction can be ignored. These calcula­
tions have been carried out by D. G. Sannikov for 
the case of Cu. By selecting test functions in the 
form of polynomials for p and for the velocity 
potential cp in the cell, which satisfied the bound­
ary conditions appropriate to a given l 0, and then 
varying three undetermined parameters, it was 
possible to obtain eigenvalues of the energy nwz 
for different l. The unperturbed density was sub­
stituted from Ref. 12. 

The radius of the cell was taken to correspond 
to the normal density of copper, ~ 0 = r 0 /p. = 9.4. 
The following values were obtained, which repre­
sent upper limits, since a variational method was 
used: . 

1. l 0 = 0; l = 0, nw = 30 ev (which corresponds 
to the beginning of the band, k = 0 ) ; l = 1' nw = 
27 ev (which corresponds approximately to kd = 
1T). 

2. l 0 = 1; l = 1, nw =58 ev (which corresponds 
to the beginning of the band, k = 0 ) ; l = 0' nw = 
74 ev (which corresponds approximately to kd = 
1T). 

The relatively small width of the lower band 
( "" 3 ev ) corresponds to the fact the plasma is uni­
form (<v2 >k~ « w~). It indicates that the study 
of collective oscillations in crystals carried out 
above is developed within the confines of the usual 
theory of plasmons. The lower band corresponds 
to optically inactive oscillations in the sense that 
it cannot be immediately excited by light. Cer­
tainly, however, a more complicated process on 
the part of an interstitial electron is possible, as 
a result of which light can excite a plasmon of such 
a type. This has been the object of a separate 
study. 16 

The characteristic value of the energy losses 
in Cu is considered to be about 23 ev (Ref. 1). 
One can identify the band l 0 = 0 with this figure. 
It follows consequently from (32) and (32a) that 
just this band can be excited by a charged particle. 
The existence of longitudinal oscillations with l = 
1 has to be regarded as extremely improbable; 
this band is very broad, plasmon oscillations with 
energies of "' 60 ev will very rapidly go over into 
excitations of separate electrons. Certainly the 
application of the Thomas-Fermi method can in 
general give rise to certain doubts. Here, how­
ever, the method is not addressed to such fine ef­
fects as the chemical bond or the compressibility, 

where it is excessively crude, but to energies 
which exceed the energy of the chemical bond by 
one or two orders of magnitude; we expect that 
the results derived above are approximately cor­
rect. As a matter of fact it is known that the 
Thomas-Fermi method gives values for the ener­
gies of atomic 'electrons which are not too far out 
of line. For a study of other possible optical ef­
fects see Ref. 16. 

In conclusion I would like to thank V. L. Ginz­
burg and V. P. Silin for interesting and useful dis­
cussions and comments and D. G. Sannikov for 
submitting the results of his calculations, quoted 
in Sec. 8. 
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