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to the relation 

0.15(/0 / l-4)n5 

m I M s = N a + --:1-_-----,~:-;-I .-:;"I-"-
where I0 and I are the exchange integrals be
tween the s and d electrons for one lattice site 
and between its neighboring sites respectively, Is 
is the transfer integral of the s electron.4 Ac
cording to Eqs. (2) and (4), E (Eo)= 0.4, (- 0.26) 
for Ni, 0.73 (-0.195) for Co, and 0.18 (-0.347) 
for Fe. Substituting these values in (3) we find that 
the computed and experimental values of m are in 
excellent agreement. 

Quantities analogous to (2) also enter into the 
relation for alloys. For example, for the alloys 
Fe, Co, Ni (component A) with Cr and V (com
ponent B), 

mal Ms = ... =f[1+0.642 L;n;(r,-R8 )A 8 
i 

-0.642 ~n;(r;-RA8)AAAB), 
i 

(5) 

where i = 1, 2 for lattices A2 and A3, and 1 for lat
tice A1, while the upper sign applies for Fe - Cr 
and Fe- V, the lower, for Ni- Cr and Co -Cr. The 
computed points lie on straight lines which cross the 
ordinates (moments) -1, 1 and 1, -1MB, and 
abscissas (concentrations) 42 at % Cr, 22.78 
em% Cr, 13.5 at% Cr and 20 at% V, respec
tively, for Fe- Cr, Ni- Cr, Co- Cr and Fe- V. 
This is in agreement with experiment.5 For the ob
served concentrations, a= RAB for Fe -Cr and 
Fe- V; above, deviations from linearity are ob
served. The change of moment (at 100 at % B) 
is almost the same as in experiments with weak 
solid solutions. 

*It is shown fhat, with an accuracy to within 1%, R = R 8 

+ Rct, where R 9 and Rct are the "radii" of the s and d 
shells of isolated atoms, computed by Slater. 1 The quantity 
r1 - R = r,- (R9 + Rct) recalls the difference considered in the 
theory of ionic crystals between the equilibrium minimun in
terionic distance and the sum of the radii of the neighboring 
ions of the lattice which characterizes their collision. We note 
that the numerical values in Eq. (1) are also encounted in 
Ref. 2 on the ionic structure of spinel; thus, for example, the 
number 235/60 given the factor u which characterizes the 
departure of the structure of spinel from the ideal (for the latter 
case, u = 0.375); the number 13.75 is Madelung's constant, 
which corresponds to u = 0.385, etc. 

trn each of the last three alloys there is one transitional 
metal; therefore, R for the particular metal is used in place of 

RAa· 

+The quantity in square brackets in (1) is equal to R/0.13 
= 7. 7 R. The latter number, divided by 12 (the number of 
nearest neighbors in a metal with lattice type Al), is equal to 
0.642 R. The coefficient 0.642/ A obtained in such fashion 
enters in Eq. (2). 
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Translated by R. T. Beyer 
197 

RELATIVISTIC MOTION OF AN ELECTRON 
IN AN AXIALLY SYMMETRIC FIELD 
WHICH MOVES ALONG THE AXIS OF 
SYMMETRY 

M. V. KONIUKOV and Ia. P. TERLETSKII 

Moscow State University and Tul' skii Pedagogi
cal Institute 

Submitted to JETP editor December 16, 1957 

J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1003-1005 
(April, 1958) 

l. Since the problem was first studied by Wiederoe1 

a detailed investigation of the relativistic motion of 
an electron in a varying axially symmetric field has 
been made in only two cases: motion in a magnetic 
field which is uniform and parallel to the axis of 
symmetry2 and motion in a barrel-shaped magnetic 
field. 3•4 Below we study a new version of this prob
lem in which a magnetic field which falls off in the 
direction of the axis of symmetry (bottle-shaped 
field) is displaced along this axis with variable or 
fixed velocity. Just as in the earlier cases, the 
new version of this problem can be used as the 
theoretical basis for a new type of accelerator -
a linear induction accelerator or, as it might be 
called, a linear betatron. 

2. Following Refs. 2-4, the equations of mo
tion of the electron are determined from the La
grangian function 

L = ·- m0c2 VI- v2lc2 +(e I c) r~A 

and have the form 

_!1_ (m;) =!:... ,;, ~ = !__ ,;, [H· - ~] 
dt c • ar c ' z r ' 

d • e • aA e · 
di (mz) = c 'If? Tz =-c r'f?Hr. (1) 

mr~ =-+A=--~ ( ': + ~), :1 (mc2 ) =- 4- r? ~~ , 

where m = m 0 ( 1 - v2 I c2 ) -t/l, A is the Aq; com
ponent of the vector potential, b is a constant of 
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integration, H is the mean value of the z com
ponent of the magnetic field in a circle of radius 
r and the remaining notation is obvious. The third 
equation in (1) can also be written in the form: 

m2 (i-2 + z2- c2) + (e 1 c)2A2 + m~c2 = 0. (2) 

3. In the quasi-stationary approximation the fol
lowing solution of the -field equation applies in the 
region of the line r = R, t = z - z ( t) = 0: 

A = r [ H~ - !!:_ R.2 -t-~- H~ ~ - a~2 J, (3) 
2 2 4 R 1-z2fc2 

where H~ and H~ are the components of the field 
at r = R, t = 0, z ( t) is an arbitrary function of 
the time which satisfies the condition z = c2 x 
( 8Hz/8r)0 /H~ and a is a constant. In a field of 
this kind, when a= -2H~/R2 , Eq. (1) has the par
ticular solutions r = R and z = z ( t), i.e., the 
electron moves in a helix of constant radius if the 
function z ( t) is given by the equation 

ct = vzmv oc + z (t) + oc In (VZ{t} + v oc + z (t)), (4) 
oc = m~c4 [I + (eR.H~ 1 m0c2 ) 2 ] 1 2e2R.H~H~, 

where the particle energy is 

E = mc2 = V 2e2H~H~ (oc-t- z). (5) 

In the case of relativistic initial energies and z » 
RHz/2Hr, from Eqs. (4) and (5) we have 

z=ct, E=EoV2zH,fRHz. (6) 

4. If the field is displaced along the z axis with 
constant velocity u, i.e., A= A(r, z-ut), from 
Eq. (1) we find 

m(z-c2 lu)=-Mc2 lu, M=m0 (!-r~~~lc2)-'12 , (7) 

where M is the mass of the particle at i = 0 and 
:r = o. 

According to Eqs. (2) and (7), an electron which 
originally moves in the wide section of the "mag
netic bottle," where Hz = H0 and A = A0, falls 
into the "neck"' of the bottle (where Hz = H) and 
then again is forced into the wide part, acquiring 
the following energy in the process 

E I Eo = 2 [(mo I M) 2 + (eA I Mc2) 2]- I. (8) 

If it is assumed that the motion is such that the 
adiabatic invariant Hzr2 = const is conserved, 
with a relativistic initial energy we have A = 
r 0 v'H0H and Eq. (8) can be written in the form: 

EIEo-t-I=2(AIAo)2 =2HIHo=LI2l, (9) 

where L is the length of path over which acceler
ation takes place, and l is the length of the seg
ment over which the field changes from H0 to H. 

5. Equations (8) and (9) do not hold if u =c. In 

this case the field equation yields 

A= 1MH (z- ct) + bjr, (10) 

and from Eqs. (1), (2) and (7), for the case Hzr2 = 
const, we have 

E -- E0 = (e2 12 Eo) (Horo2 ) [H- Ho], 
z-ct 

e2(Hr 2 ) \ _ 
Z-Zo=- 2M 2c• ) (H-Ho)d~. (11) 

z, 

For relativistic initial conditions Mc2 = - eA0 

and since A0 Rl H0r 0, we have 

1 
EIE0 -I= 2 (HIH0 -I)=Lil. (12) 

6. According to Eqs. (9) and (12), in a linear ac
celerator in which the field moves with constant 
velocity u, we have: E/E0 Rl 2H/H0 or E/E0 Rl 

H/2H0, i.e., the situation is analogous to that in 
the usual betatron. However, in contrast to the 
betatron the strong field H can be concentrated 
in a very small region since He2 = const. 
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AN interesting method of making direct determin
ations of the velocities of ionizing particles in a 
Wilson cloud chamber has recently been proposed 
by ·Gabor and Hampton.1 In this scheme, the tracks 
are "marked" by a high-frequency ( rf) electric 
field by using the difference in intensity of electron 




