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consider the case of "specular" reflection, i.e., 
where the integral in (19} becomes identically zero, 
since this has no physical significance. In this case 
one would have to consider higher terms in the ex
pansion of t~urf in vI wo. 

It is interesting to compare the magnitudes of 
t~urf and t~1· It stands to reason that they can 
be estimated only roughly; in any case, no more 
accurately than the nearest order of magnitude, 
since at the present time the functions which enter 
into the formulas are not known. This is particu
larly true of t~1 , for which the expression is of 
an extremely complicated type. The estimates give 

c'surf' ~vIc ~ I o-2; c~l ~ m'l•ow2 I 1ien'l. ~ I o-aow2. 

It can be seen that even up to a frequency of w "' 
1014, tel is, generally speaking, less than t8urf· 

As for the absorption of light accompanied by 
the emission of phonons, Holstein5 has shown, in 
the case n w » k® ( ® being the Debye tempera
ture} that the corresponding component of t', like 
tsurf• is independent of w and is of the same 
order of magnitude as tsurf• and is correspond-

ingly smaller at lower frequencies. It would be 
very difficult to obtain an exact formula for this, 
since it depends chiefly on the short wavelength 
phonons with nw "' k®, i.e., with wavelengths of 
the order of the lattice spacing. 

In conclusion I would like to thank Academician 
L. D. Landau for advice and discussions. 
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We study the geometrical consequences for elastic scattering of the fact that nuclear particles 
possess a spin. The scattering matrix for particles of arbitrary spin is constructed, and those 
quantities which are experimentally measurable (cross section, polarization, and polarization 
correlation) are expressed in terms of its matrix elements. We consider the question of the 
completeness of a polarization experiment. We show that to reconstruct the scattering matrix 
it is necessary to measure either the cross section for scattering of a polarized beam by a 
polarized target, or the polarization correlation after scattering (with an initially unpolarized 
state), or finally measure the change of polarization of the incident particles after scattering 
( repeated scattering). The last experiments will be sufficient only if the spin of the particles 
in the beam is not less than the target spin. 

THE analysis of angular distributions and polari
zation in nuclear reactions is done by two methods. 
The first method, that of phase analysis, has been 
investigated in detail and generalized to the case 
of arbitrary spins. 1 The second method, that of 

Dalitz, Wolfenstein and Ashkin, 2 which constructs 
the scattering amplitude as a function of the initial 
and final wave vectors and spin operators, has been 
investigated for reactions involving particles of 
spin 0, Y2 and 1. a-s The present paper gives the 
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extension of this method to the elastic scattering 
of particles of arbitrary spin. 

1. CONSTRUCTION OF THE SCATTERING 
MATRIX 

The general method for constructing the scat
tering matrix is to form all possible scalars from 
the spin operators and the initial and final wave 
vectors ki and kf. As spin operators, we shall 
use the irreducible tensor operators ~. normal
ized by the condition 

Sp {n (T~Y} = oqA"''· 

If the spin of the incident particles is s 1 and 
the target spin s 2, ( s 11 s 2 ~ 0) we can use the 
irreducible combinations of products of tensor 
operators: 

(1) 

The following functions, which transform accord
ing to an irreducible representation of the rotation 
group, can be formed from the two unit vectors ki 
and kf 

The spherical harmonics are normalized by the 

condition 2::) IYzl 2 = 1. Since the scattering ma-
m 

trix must be even under space inversion, it can 
contain only those functions >¥~z 1z2 for whichK l 1 + 
l 2 is even. If l 1 + l 2 > q + 1, the function >¥qzl2 
can be written as a linear combination with scalar 
coefficients of the same functions, but with l 1 + l 2 

= q if q is even, or with l 1 + l 2 = q + 1 if q is 
odd. Thus in constructing the scattering matrix 
we can restrict ourselves to functions of ki and 
kr of the form 

The number of independent scalar functions of 
angle and energy, a~ ( q 11 q2 ), is reduced if we 
impose the condition of time reversibility of the 
scattering process. If the time r~versal operator 
is written as UK, where K is the complex con
jugation (cf. Ref. 7), the reversibility condition is 
expressed as: 

(4) 

where * denotes complex conjugation and + means 
Hermitian conjugation. We then get 

aq_~. (qr, qt) = (- I )q,+q,+qa~ (qr, q2); 

the operator U has the property 

un(qr, q2)u+ = (-J)H"T'!_x(qr, q2)· 

(5) 

If one of the particles has spin zero, the reversi
bility condition gives 

(5a) 

If the particles are identical, a symmetry con
dition is imposed on the scattering matrix, giving 
the relation 

(6) 

2. DENSITY MATRIX. CROSS SECTION. 
POLARIZATION. 

The density matrix for the spin state of the two 
particles, (the incident and target particles) is 
also conveniently expressed in terms of the tensor 
operators T~ ( ql> q2 ): 

r, = ~ Plj"'""'T~ (qr, q2). 
q1q2qX 

The expansion coefficients are identical with the 
statistical tensors introduced by Fano, and have 
the physical significance of being polarization ten
sors. The final density matrix p is related to the 
initial density matrix p(O) by 

(7) 

(2) If we go over to the polarization tensors, we get 

where r = q/2 if q is even, and r = (q + 1 )/2 
if q is odd. The scattering matrix can thus be 
written as 

If the spin of one of the particles is zero, the 
matrix becomes 

(3) 

M (k;, k1) = ~ (nt ~ af'I~'~t. (k;, kJ)· 
qx A--r 

(3a) 

(8) 

where 

Taking the trace gives the following expression: 

z 

>< ~ <p~7AtP2A2 (ki, k/) ~a~' (Pn. Pul [af; (P2r• P22W 
Pi Ai f'i h 
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where (10) 

ll' 

(11) 

If one of the spins, for example the target spin s 2, 

is zero, the expression simplifies somewhat: 

K~:~;(k;, kJ) = (-I)M><, ~(q1q2>< 1 -><2 lz~) 
z 

(lla) 

The meaning of all the quantities is clear from the 
way they were introduced. The three-by-three 
tableaus in parentheses are the coefficients of the 
unitary transformation between different schemes 
for coupling of four vectors. 

The following important equality follows from 
time reversibility: 

Kq,x,q,q., (k · k ) = (- 1 )q,+x,+q,+><•Kq,-x,q.,q,. (k k ·) (12) 
lJaY.zqurJu l' f q1- K 1{jnQu f' l • 

This is not the only condition which the coefficients 
K::: satisfy. From the conservation of parity, these 
coefficients are even functions with respect to simul
taneous change of the signs of the vectors ki and 
kf. Therefore, for example, in the coordinate sys
tem in which the z axis is along [ kikf] , the sum 
Kt + K2 can take on only even values. 

It is not difficult to express all measurable quan
tities - cross section, polarization, and polarization 
correlation, in terms of the coefficients K:::. We 
now give these expressions. 

A. The cross section for scattering of an unpo
larized beam by an unpolarized target is 

C!o = K~ggg (k;, k1). (13) 

B. The polarization of the scattered beam under 
these same initial conditions is 

pqx(k,, kt)=K~~0~o(k" kt)/Y2s1 + lcr0 • (14) 

As a consequence of the parity condition mentioned 
above, in the coordinate system in which the z 
axis is parallel to [ kikf], K takes on only even 
values. In particular, this means that the polari
zation is always along [ kikf]. In the system in 
which the z axis is along ki or kf and the y 
axis is along [kikr], the same condition is ex-

pressed differently: 

pq-x(k;, kj) = (-l)q+"pqx(ki, k,). (14a) 

Thus single scattering gives rise to a state of 
polarization of a special type. In order to obtain 
a general state of polarization, double scattering 
is necessary (if we disregard other means of po
larization of particles, such as the use of a mag
netic field). 

C. The cross section for scattering of a polar
ized beam by an unpolarized target is 

(15) 

If follows immediately from (12) that measurement 
of the polarization gives the same information as 
measurement of the scattering cross section of a 
polarized beam. Considerations analogous to those 
of case B show that the angular distribution is af
fected by only those p~~ for which K is even (in 
the system with the z axis along [kikf] ). In or
der to determine the remaining part of the polari
zation tensor, one must use double scattering (once 
again assuming that we disregard other methods for 
analyzing the polarization). If we make use of (12) 
and (14), the expression (15) can be rewritten as 

cr (k;, kt) = (2sl + 1) cro ~ (- l)q+"Pq-x (kf, k;) p~)'(15a) 
Q>< 

It is also not difficult to obtain the cross section 
for double scattering of an initially unpolarized 
beam by an unpolarized target. From (15a) we get 
immediately 

crd = ( 1 / cr~1 )) ~ K~~ggoo (k1 , k2) K~~~~xqo (k2 , k3), (16) Q>< 
or 

cd = (2s1 + 1) cr~2 ) ~ (- 1 )H" pi}). (k1 , k2) p~2}_" (ks, k2)(16a) 
qx 

(k1 is the direction of incidence of the beam, ~ 
its direction after the first scattering, and k3 its 
direction after the second scattering). 

In a coordinate system with the z axis along 
k2, the double scattering cross section is given by 

:!Sl 

:;d = (2sl + 1) cr62) ~Ax cos >cp; 

2s, 

Ao = ~ P~~) (&I)(;~~ (&2). 
q~o 

Here pUJ ( ~1) and pUJ ( ~2) 
of the tensors p4~ ( k1, ~) and 

(16b) 

denote the values 

pUJ ( ka, ~ ) in the 
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coordinate systems with the y axis perpendicular 
to the plane of the first and second scattering, re
spectively ( in both cases the z axis is along k2 ) ; 

cp is the angle between the planes of scattering. 
D. The polarization of the scattered beam when 

a polarized beam is scattered by an unpolarized 
target is 

(k 1 ~ q'x'q'O k ) (0) 
pqx /, kt) = cr(k· k) ~ Kqxqo ( '' kt pq'><' · 

'' f q'x' 
(17) 

E. The cross section for scattering of a polar
ized beam by a polarized target is 

F. The polarization correlation in scattering of 
an unpolarized beam by an unpolarized target is 

pqxq,q, (k,, kt) = K~~q, (k,, kt) / cro V(2sl + 1) (2s2 + 1 ). 

(19) 
From (12) it follows immediately that experiments 
E and F are equivalent from the point of view of 
the information which they give. 

3. COMPLETENESS OF POLARIZATION 
EXPERIMENTS 

The number of independent scalar functions of 
energy and angle, a~ ( q1, ~), which appear in the 
scattering matrix (3), is equal (if we disregard 
time reversibility ) to 

No (s11 s2) = 1/ 2 [(2s1 + 1)2 (2s2 + 1)2 + 1], (20) 

if both spins are integral, and to 

No (s1 , s2) = 1/ 2 (2sl + I )2 (2s2 + I )2 • (20a) 

if one or both of the spins are half-integral. If we 
impose condition (5) on the functions a~ (qt> ~ ), 
their number decrease and becomes 

N (s1, s2)= 1/2N 0 (s1,s2)+ 1/ 2(2sl+1)(2s2+1). (21) 

For identical particles the number of independent 
functions a~ ( qt> ~ ) appearing in M ( ki, kf) is 
decreased still further and becomes ( s 1 = s 2 = s) 

N (s) = 1j 2N (s, s) + 1/ 8 (2s + I) (2s2 + 2s + 8j 2). (22) 

The functions a~ ( qt> ~) are complex, so that all 
the numbers we have given should be doubled. How
ever, the scattering matrix satisfies the unitarity 
condition8 

M (k,, kt) - M+ (k1, k1) = ·~ ~ M+ (k1, n) M(k1, n)dn~23) 

which imposes as many relations on the complex 
functions a~ ( qt> ~) as the number of such func
tions appearing in the scattering matrix. 

In experiments E and F we find the quantities 
K~~~1q2 ( ki, kf) ( or ~~~1q2 ( ki, kf) which is the 
same thing ) . Their number is N 0 ( s 1, s 2 ) • Thus 
each of the groups of experiments E and F gives 
a sufficient number of equations for reconstructing 
the scattering matrix. 

The experiments B and the equivalent experi
ments C enable us to study only the quantities 
~0~~0 , whose number is in general less than the 
number of elements in the scattering matrix 
(though this is not the case for scattering by a spin 
zero target). Double scattering may thus be insuf
ficient for determining M (ki, kf), which is the 
situation we meet when we study nucleon-nucleon 
scattering. 

The number of coefficients K3:~~:a~~ which appear 
in the quantities of group D is N ( st> s 1 ), and 
consequently repeated scattering in principle en
ables us to reconstruct the scattering matrix, but 
only when s 1 :::: s 2• 

In conclusion I should like to express my sincere 
thanks to Ia. A. Smorodinskii and A. I. Baz' for con
tinued interest in the work and much valuable advice. 
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