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Two methods for measurement of the dynamic compressibility of solids are described which 
are based on determination of the kinematic parameters of shock waves, -their v:elocity of 
propagation and the mass velocity of the substance behind the front. The adiabates of shock 
compression of iron possessing various initial densities were determined by these methods 
in the pressure range from 4 x 105 to 5 x 106 atm. The compressibility curve of iron at ab­
solute zero is derived from the experimental data. The curve is extrapolated to pressures 
at which statistical atomic models are valid. 

INTRODUCTION 

THE investigations of the equations of state of ele­
ments and compounds at high pressures are of 
great interest for various branches of experimental 
and theoretical physics, geophysics, cosmogony and 
a number of related disciplines. 

Until recently, the only experimental method for 
the high-pressure region was the static measure­
ment of compressibility using piezometers of vari­
ous designs. Bridgman's well-known work1- 3 cov­
ered the range of pressures up to 100,000 atm. At 
still higher pressures the piezometer vessels were 
deformed so that exact measurements could not be 
obtained. 

In an entirely different manner, which does not 
involve the use of mechanical pressure or special 
piezometers, conditions of high hydrostatic pres­
sure are created for short time intervals behind 
the front of a strong shock wave. This method can 
be used to produce pressures of hundreds of thous­
ands and millions of atmospheres, which are unat­
tainable by static methods. The laws of mass and 
momentum conservation relate pressure and den­
sity in a shock compression to the kinematic pa­
rameters of the shock wave through two equations: 

cr1 = Vo I V1 = D I (D- U 1), (1a) 

(1b) 

where D is the velocity of propagation of the shock 
wave, U1 is the mass (or particle) velocity of the 
material, v1 is the specific volume behind the 
shock front, v0 is the initial specific volume, a1 

is the relative compression and P 1 is the pres­
sure of the shock compression. It· iS assumed that 
ahead of the front the pressure is zero and the 
medium is at rest. 
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By means of Eqs. (1a) and (1b), the problem of 
determining pressures and densities p1 = 1/v 1 re­
duces to experimentally feasible measurements of 
the wave and mass velocities of shock waves. 

We now consider the conservation of energy. 
The total amount of work done on a unit of mass 
by a passing shock front is represented in Fig. 1 
by the area of the rectangle with the sides P 1 and 
v0 -v1• According to Eqs. (1a) and (1b), half of 

FIG. 1. P- v diagram 
of shock compressibility. 

2 

this work is transformed into kinetic energy, while 
the remainder increases the specific internal en­
ergy by the amount 

(2) 

Equation (2). describes the Hugoniot adiabate of the 
shock compressibility of the medium. 

The internal energy acquired through compres­
sion is divided into an elastic component Ec rep­
resented by the area between the horizontal axis 
(of volumes ) and the curve of P c, which is the 
"cold" compressibility at absolute zero, and the 
thermal energy ET represented by the area of 
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the crisscrossed curvilinear triangle. Thus a 
shock compression is always accompanied by heat­
ing of the substance and increase of its entropy, 
which in turn leads to the appearance of a thermal 
pressure component PT. With increasing wave 
amplitude, the thermal energy and thermal pres­
sure of a shock compression rise progressively. 

It is obvious that a single dynamic adiabat does 
not provide sufficient information for obtaining an 
equation of state. Ia. B. Zel' dovich has shown that 
much more complete information regarding the be­
havior of matter at high pressures can be obtained 
from two shock adiabats with different initial den­
sities. The shock compression of a porous speci­
men (of lower density) is associated with large 
volumetric deformation and a large entropy in­
crease as a result. Thus in the P - v diagram 
the "porous" shock adiabat is always above the 
adiabat of the solid material (see Fig. 1). The 
relative positions of the two adiabates, which cor­
respond to very different degrees of heating, per­
mit the derivation of a semi -empirical equation of 
state for the test material. Extrapolation leads to 
the compressibility curve at absolute zero. 

The dynamic procedure for the investigation of 
equations of state was developed by the present 
authors about ten years ago. The present article 
describes the principal methods of measuring the 
dynamic compressibility at high pressures and 
the results obtained from a study of iron* in the 
range from 4 x 105 to 5 x 106 atm. One of these 
methods was independently developed by Mallory, 5 

Walsh and Christian, 6 Goranson, Bancroft and 
others 7 •8 in investigations of the compressibility 
of metals including iron. The range of pressures 
in these investigations was relatively small and 
did not exceed a maximum pressure of 4 x 105 

atm; the results which are pertinent to the subject 
of the present article will be mentioned in the sec­
tion on the equation of state of iron. 

1. METHODS OF DETERMINING DYNAMIC 
COMPRESSIBILITY 

The dynamic study of compressibility is based 
on the experimental determination of wave and 
mass velocities. Wave velocities are measured 
relatively simply by contact pins placed in the path 
of the shock wave. On the other hand, in most 
cases it is impossible to observe the mass veloc­
ity of a substance directly. 

We have developed two methods for the complex 
determination of the kinematic wave parameters, 

*This was actually low-carbon steel with 0.2% carbon. 

the method of "splitting off" and the method of "de­
celeration". The first method studies the propa­
gation of a strong discontinuity which appears in 
an elastic barrier from which a detonation wave is 
reflected. Figures 2 with the coordinates path and 
time represents the motion of the shock wave and 
unloading wave in the barrier plate. The experi-

FIG. 2. x- t diagram 
of the reflection of a de­
tonation wave from an 
elastic plate. OA deto­
nation wave; AC- shock 
wave; BC- centered un­
loading wave. 

High explosive Barrier plate :.C 

(HE) 

mentally measurable quantities are the wave veloc­
ity D and the velocity of displacement W of the 
free surface of the plate in the initial portion of 
its trajectory, which is approximately twice the 
mass velocity of the material behind the wave front. 

The velocity W is acquired by the matter of the 
barrier through two different processes; these are, 
first, the shock transition from the state P 0 = 0, v0 

to the state Ph v 1 and, secondly, the subsequent 
isentropic rarefaction in the opposing unloading 
wave to the state P 0 = o, v0 > v0• 

In the state Ph vh the mass velocity is U1 = 

..jp 1 (v0 - v 1 ) • The additional velocity acquired 
through rarefaction to v0 is 

v, 

u~ = ~, V -dPdv. 

vo 

For very weak shock waves down to sound waves 
U1 = Ui and W = 2U1• In the general case Ui ;« Uh 
which with increasing wave amplitude leads to vio­
lation of the law of doubled mass velocity. But for 
a broad class of possible equations of state of sol­
ids, with degrees of shock compression u1 < 1.4 
the departures from the doubling law are of the 
order 1 - 2%. Hereinafter for small compressions 
we shall assume 

(3) 

The same result was obtained in Ref. 6, where 
the question of violations of the doubling law was 
regarded under the most general assumptions with 
respect to the isentropic rarefaction. A special 
experiment showed that for iron the mass velocity 
is doubled approximately up to very high shock 
compressions of 3.5 x 106 atm. The "splitting-off" 
method is entirely unsuited to the investigation of 
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porous materials, where for weak shock waves U!. 
is almost zero. 

The "deceleration" method is based on very 
rigorous premises and can be applied to any ma­
terials at pressures and densities as high as de­
sired. In the "deceleration" method a smoothly 
accelerated "shock driver" strikes a "target" at 
rest inducing two shock waves which are propa­
gated in opposite directions from the collision 
surface (Fig. 3). The measurable parameters 

! t 
I 
I FIG. 3. x-t diagram of shock 

deceleration. T is the target; 
D is the shock driver; 1 is the 
region of shock compression 

are the velocity WH of the driver and the veloc­
ity DT of the shock wave in the "target". In 
shock compression region 1 on both sides of the 
driver-target interface equality of velocities and 
equality of pressures are always established. The 
first of these equalities follows directly from the 
continuity of the medium, while the second follows 
from the law of the equality of action and reaction. 

U 1 denotes the velocity of progressive motion 
of the boundary, which coincides with the jump of 
mass velocity at the front of the shock wave pas­
sing through the "target". The velocity jump at 
the front of the wave propagating through the driv­
er is W D - U 1• When the driver and target are 
made of the same material, Wn- U1 = U1 and 
thus 

(4) 

The other parameters of the shock wave in the tar­
get are obtained by substituting U 1 and DT into 
the conservation equations (1). Measurements at 
different velocities of the shock-producing body 
determine a number of points on the dynamic adi­
abat of the tested material and thus on the whole 
determine the dynamic adiabat of the target and 
driver material. 

Equation (4) superficially resembles Eq. (3). 
But in the splitting-off method the velocity of the 
barrier is acquired through two essentially differ­
ent processes, the shock compression and the sub­
sequent isentropic rarefaction, whtch furnish ap­
proximately identical velocities only for relatively 
weak shock waves. In the deceleration method, 
the double reduction of velocity through shock de­
celeration is exact for velocities of any magnitude 

and at any pressures and temperatures of shock 
compression. 

When different solids collide, there is no equal­
ity of the velocity jumps in the target and driver. 
This difficulty is easily overcome if the driver is 
made of a material with a previously determined 
dynamic adiabate which furnishes a function rela­
tionship b~tween shock compression pressure and 
the velocity jump Wn - U1• In the pressure­
velocity diagram (Fig. 4), the dynamic adiabate of 

FIG. 4. P- U diagram of shock q 1----l" 

deceleration. AD is the adiabat of 
driver deceleration; OT is the 
wave line of the target; 1 is the 
state of shock compression. 

deceleration of the driver material is represented 
by a curve whose distance from the coordinate 
origin is Wn. Measurement of the wave velocity 
DT in the target determines the position of the 
wave line OT of possible shock compression 
states of the target material, satisfying the equa­
tion PT = PoTDTU (POT is the initial density of 
the target material ) . In actuality, state 1 is re­
alized for equal pressures and velocities of the 
driver and target on both sides of the interface. 
This state lies at the intersection of the driver 
adiabat and the target wave line. The intersection 
coordinates determine the pressure and mass ve­
locity, and also through Eq. (1a) the shock com­
pression density of the target material. 

2. METHOD OF INVESTIGATION AND EXPERI­
MENTAL TECHNIQUE 

Measurements of the wave and mass velocities 
by the splitting-off method were obtained in a se­
ries of 6 to 7 experiments which were designed to 
induce shock waves of identical amplitude in the 
barriers. Some of the experimental work was de-

/( 

a 

FIG. 5. Scheme of measurements: a- wave velocity; b- split­
ting-off velocity in the barrier plate. K- electrical contactors; 
Ke- electrical contactors with protective caps. 
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signed to determine the wave velocity according 
to the scheme of Fig. 5a, and the remainder to de­
termine the velocity of the free boundary accord­
ing to the scheme of Fig. 5b. The wave measure­
ments are performed by means of two groups of 
electrical pickups K which are acted upon suc­
cessively by the shock front. The distance be­
tween the "upper" and "lower" pickups provides 
the measuring base distance d, which is usually 
5 to 8 mm. 

With varying velocity of propagation of shock 
waves, the recording of time intervals furnishes 
average velocities for the experimental distance; 
these agree very accurately with the instantaneous 
shock velocities at the middle of the base distance. 
Mass velocities behind the shock front must also 
be measured at the same distance from the explo­
sive. Figure 5 shows that the latter measurements 
obtained with thinner barriers whose free surfaces 
are separated from the HE boundary by the same 
distance as the center of the base distance in the 
wave measurements. 

The velocity of barrier plate motion is not con­
stant (Fig. 2). This is due to the fact that when the 
detonation wave is reflected at the boundary be­
tween the explosive HE and the plate, the pressure 
and velocity regime which is established decays 
with time. For a very strong barrier which re­
mains continuous during the initial period of motion 
the trajectory of the free surface reproduces accu­
rately to within the doubling coefficient and a cer­
tain time shift the velocity decay at the detonation 
interface. 

The pattern of motion is complicated by the 
presence of disruptive stresses in the region occu­
pied by the unloading wave; these stresses are zero 
on the free surface and have their maximum value 
at the boundary of the unloaded zone. The magni­
tude of the stresses increases as the unloading 
wave moves farther into the barrier. At a certain 
distance from the surface the tensile stresses 
reach the limit of dynamic breaking strength; this 
leads to the formation of a crack and the splitting 
off of a thin plate. For matter with vanishingly 
small strength, the split-off plate is very thin. 
Under such conditions it can be assumed that its 
velocity coincides with the free surface velocity 
at the instant when the shock wave reaches it. For 
the majority of materials, correct values of the 
initial velocity can be obtained in barriers with a 
generated surface of separation between the main 
plate and a split-off plate a few tenths of a milli­
meter thick (Fig. 5b). Such plates, which separate 
freely from the main plate, determine our required 
maximum mass velocity on the shock front as it 

reaches the free surface. 
In order to obtain undistorted results, the meas­

uring units must be placed close to the explosive 
axis in a region which is not touched by unloading 
waves from the lateral surfaces of the explosive 
charge or the specimen. 

Certain limitations are placed on the ratio be­
tween the thickness d of the barrier and the dis­
tance s which is the base for measurement of the 
surface velocity (Fig. 5b). During a measurement, 
the unloading wave after reflection from the bound­
ary between the barrier and explosive products 
must not again reach the free surface. This con­
dition will be fulfilled if 

sjW<,2djD. (5) 

In Eq. (5) it is assumed that the velocity of the un­
loading wave in the barrier is approximately equal 
to the velocity D of the transmitted shock wave. 

In investigations of relatively strong shock 
waves, which communicate velocities of a few ki­
lometers per second to the free surface, the elec­
trical pickups K outside the barrier must be 
covered with special protecting caps that are sep­
arated from the contact points by a few tenths of 
a millimeter. These are required to prevent pre­
mature shorting of the electrical contacts by the 
air shock wave which moves ahead of the barrier 
plate. 

Shock driver 

a b 

FIG. 6. Arrangement for measurement of wave and mass 
velocities by the deceleration: a- of the shock driver; b- of 
the shock wave in the target. 

Figure 6 shows the arrangements for determin­
ing the velocity of the shock driver and of the wave 
in the target by the deceleration method. Each of 
these quantities is determined in an independent 
series of experiments. With varying, increasing 
velocity of the driver the wave velocities in the 
target material and the driver velocities must be 
measured at an identical point of the trajectory, 
which is the middle of the measuring base. 

Rigorously related values of W D and DT 
could be obtained only if the measuring base were 
made infinitely small, with the target surface at 
the midpoint s, and if wave velocities were meas-
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ured directly on the surface. This is, of course, 
impossible. For a finite measuring base distance 
as shown in Fig. 6b. The motion of the shock 
driver from the target surface to the center of the 
J;>ase is replaced in wave measurements by the mo­
tion of the shock wave in the target. Since the ve­
locity of the driver moving through air and the 
mass velocity in the shock wave moving through 
the target do not have identical relative increments, 
small corrections are made to the measured values 
of the wave velocities not exceeding one percent of 
the value of DT. As in the splitting-off method, 
during measurements of Wn the electrical con­
tactors must be shielded. 

In all of the experiments for the determination 
of wave and mass velocities, time intervals were 
measured by means of cathode ray oscilloscopes 
with high sweep velocity; signals from the contact­
ors were fed to the deflecting plates. Figure 7 is 
a typical oscillogram as recorded with a twin-beam 
oscilloscope using a method devised by N. N. Leb­
edev, E. A. Etingof and M.S. Tarasov. The first 

fV\'~ 
1 f/l'NJVV1 

FIG. 7. Oscillogram recording time interval between elec­
trical contacts. 

step upward of the traces fixes the time of closing 
of the upper contacts; the second step upward does 
the same for the lower contacts. A sine wave with 
a period of 10-7 sec was applied to each beam. 
Time intervals were recorded with an accuracy of 
± 5 x 10-9 sec. 

We can now estimate the accuracy of determina-

tion of the dynamic compressibility. Differentiat­
ing Eqs. (la) and (1b) with respect to D and U, 
and assuming the relative errors of the wave and 
mass velocities to be independent of each other, 
we obtain the following expressions for the root 
mean square relative errors of P and u: 

ap _ (V au)" (flu " --+ - + -)' P -- U D 

/1cr /(11U-)2 (11)"):2 
-cr-=+(o-l)~ 7T + 75) 

(6) 

(7) 

Every value of D and U was obtained by av­
eraging data from 3 to 4 experiments, in each of 
which the measurements were repeated a few 
times. The relative error is ± 0.01. When this 
value of .6.U/U and of .6.D /D is substituted in 
(6) and (7) we find that the density spread at p = 
1.5 and 2.0p0 is ± 0.01 and ± 0.03p0, respec­
tively. Pressures were measured with 1.5 - 2% 
accuracy .. 

3. DYNAMIC ADIABATE OF IRON 

Up to pressure of 1.5 x 106 atm, the dynamic 
adiabate of iron was obtained by both the splitting­
off method and the deceleration method. From 
1.5 x 106 to 5 x 106 atm, only the deceleration 
method was used. Table I contains the parameters 
of all the experimentaJly determined points of the 
shock adiabate of iron. The points are numbered 
and the methods· of measurement are indicated in 
the first and second column, respectively. The 
kinematic characteristics of the shock waves are 
then given: wave and mass velocities in km/sec, 
pressures in bars, relative shock compressions 
u = v 0/v and densities in g/cm3• The initial den­
sity of the low-carbon steel specimens was 7.85 
g/cm3• The highest mass velocity U = 5.17 km/ 
sec corresponds to shock wave velocity D = 1200 
km/sec, iron density p = 13.79 g/cm3 and pres­
sure P = 4.87 x 1012 bars. 

In the entire investigated velocity range from 

TABLE I 

No. of 
point 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Method of 
measure-­

ment 

Splitting-off . 
Deceleration 
Splitting-off 

Deceleration 

" . . 
" 
" 
" . 

D,km/secl U,km/sec1Pxl012 barsl cr=v,jv, I p,g/cm3 

5.30 0.97 0.40 1.224 9.61 
5.38 1.00 0.422 1.228 9.64 
5.54 1.14 0.50 1.259 9.88 
7.27 2.26 1.29 1.451 11.39 
7.54 2.38 1.41 1.461 11.47 
8.89 3.25 2.27 1.576 12.37 
9.36 3.56 2.62 1.614 12.67 
9.98 3.83 3.00 1.623 12.74 

10.45 4.20 3.44 1.672 13.13 
10.67 4.32 3.62 1.680 13.19 
11.10 4.59 4.00 1.705 13.38 
11.32 4.83 4.29 1. 744 13.69 
12.00 5.17 4.87 1.757 13.79 
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U = 1.0 to U = 5.17 km/sec the velocities are 
related linearly: 

D = 3.80 + 1.58 U. (8) 

The functional relations between D and U, in­
eluding the form D = C0 +:XU, completely deter­
mine dynamic adiabates. For the coordinates pres­
sure and velocity Eq. (8) leads to 

P = Po ( C~ + /D) U. 

With pressure and the specific volume as coordi­
nates, the linear relation between D and U cor­
responds to the equation of the adiabates: 

C'2 (v -v) p = 0 0 
(l--1)•v•[(l-jl--1)-(v0 jv)[• ' (9) 

which is valid for iron from 3 x 105 to 5 x 106 atm. 
Figure 8 shows the adiabate of iron in the coordi­

nates P and a = v0/v. It must be mentioned that 
the parameter C0 in (9) is an adjusting constant 
and is not at all related to the actual velocity of 
propagation of weak acoustic waves. 

All of the data refer to the compression of spe­
cimens of normal density. Two series of experi-

TABLE II 

I I I I I P, 1012 E, 1010 

p0 , g/cm3 v0,cm1/gD,km/secU,km/sec v,cm3/g bars erg/g 

5.52 0.181 6.69 2.82 0.104 1.05 4.04 
7.85 0.127 0.104 0.40 0:466 
5.57 0.181 10.17 4.95 0.0923 2.80* 12.14 
7.85 0.127 0.0923 1,00* 1. 75 

*Calculated using Eq. (9). 

ments were performed with specimens of reduced 
density. The results of the latter, which were ob­
tained by the deceleration method, are given in 
Table II, which also contains for comparison the 
greatly reduced values of P and E that were ob­
tained th:r'ough a shock compression to the same 
densities of solid iron. The dimensionless param­
eters y and h are also given; these will'be dis­
cussed below. 

4. COMPRESSION OF IRON AT ABSOLUTE ZERO 

There is undoubted interest in the transition 
from shock compressions where an important part 
is played by the thermal components of the pres­
sures to the relation P 0 ( v ) at absolute zero. 

P X 1012 dynes/ em 

p 
j Hr ~. 

i 
I I Pc 

) j 
I 
l! / ./ 

3 

z 

~ ~ 
/ 

;. 0 
10 ll lZ l3 1.4 1..5 l5 /7 lf/6 

FIG. 8. Shock adiabats and cold compressibility curve of 
iron. PH- shock adiabat of iron at normal density; PHr - shock 
adiabat of iron at reduced density with v00 = 1.412 v0 ; PC- iso­
therm of iron at T = 0°; •- experimental points; o- data of 
Goranson, Bancroft et al. 7,S 

y h 
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FIG. 9. Compressibility of iron 
up to 300,000 atm 6- data from 
Ref. 7; 0- data from Ref. 8. 

Goranson and Bancroft and their collaborators 7 •8 

have studied the compressibility of iron below 300,-
000 atm. Of special interest are the results of 
Bancroft et al.,8 who at 132,000 atm discovered 
a phase transition accompanied by a kink in the 
compressibility curve (Fig. 9). Since the thermal 
components of the pressures are still small at this 
pressure, the data obtained in Refs. 7 and 8 can be 
used directly for the purely cold compression re­
lation P c ( v ) . By treating the curve of Fig. 9 as 
P 0 , we obtain the cold compression energy E0 

through a volume integration of this curve. The 
values of E0 and P 0 for P < 0.3 x 106 atm are 
given at the beginning of Table III. 

We now turn to the deduction of the equation of 
state of iron, which we need for the cold compres-
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TABLE III Ec = 1 \ PH (x) (~ -h \ x2/(h-Il dx (14) 

I 
(h-1)v2/(h I) ,) x ) • 

Ec·1010 , Pc_·1011 , PH·10n, Vo 

erg/g bars 'bars 

1.07 0.0525 
1.15 0.181 
1.19 0.30 
1.25 0.585 
1.30 0.86 
1.35 1.18 
1.40 1.57 
1.45 1.97 
1.50 2.42 
1.55 2.94 
1.60 3.51 
1.65 4.12 
1. 70 4. 79 
1. 75 5.54 

*From Ref. 8. 
**From Ref. 7. 

0.132* 
0.200* 
0.332** 
0.463 0.484 
0.600 0.645 
0.761 0.840 
0.942 1.07 
1.154 1.36 
1.358 1.67 
1.613 2.08 
1.880 2 .. 55 
2.174 3.13 
2.484 3.82 
2.822 4.66 

sibility at high shock compression densities, where 
the dynamic adiabate differs considerably from the 
isotherm at absolute zero. Here and hereinafter, 
we shall not distinguish between isotherms at room 
temperature and at absolute zero. 

We shall write the equation of state and an ex­
pression for the internal energy in the form 

P = -8EcJav + BT jv; 
E=Ec+CvT. 

(10) 

(11) 

Here -aE0 /av = Pc is the compression pressure 
at T = 0°K, B is the thermal pressure coefficient, 
Cv is the specific heat at constant volume. In gen­
eral, B and Cv can depend on temperature and 
density. 

When temperature is eliminated we obtain the 
well-known caloric equation of state9- 10 

(12) 

The left member of (12) is the thermal component 
of the pressure and the ratio ( E - E0 )/v in the 
right member is the volumetric density of thermal 
energy. • 

The Grlineisen coefficient y = B/Cv gives the 
ratio of the thermal pressure to the thermal energy 
density. We shall consider this quantity to be a 
constant which like the unknown function E0 ( v ) 
must be obtained from experiment. For this pur­
pose, substituting in (12) the expression for E 
given by the Hugoniot equation (2), we obtain the 
differential equation 

aEc PH (v) v ( 2 t>o ) v-+yE =-y-- 1+---. av c 2 y v 
(13) 

When Vt=v0, E0 =8E0 /8v=O. In(13) PH(v) 
is the experimental equation of the shock adiabate. 
The solution of (13) is given by 

aEc 2 
Pc =-av = (h _ 1)•v<h+1>t<h 1) 

(14a) 
t•, 

X ~ PH (x) ( : 0- -h )x2/(h-Ildx- h }_ 1 PH(v) (!f; -h). 
v 

In (14) h = ( 2/y) + 1 is the so-called maximum 
density of shock compression. 

At pressures from 3 x 105 to 5 x 106 atm, 
PH(v) for iron is given by (9). We shall be com­
mitting only a very small error if, when calculat­
ing E0 intheregion P>3X105 kg/cm2, we 
consider (9) to apply also to the initial portion of 
the dynamic adiabate. 

In order to determine y and thus h, we shall 
compare two states 1 and· 2 representing the shock 
compression of solid and of porous iron, respec­
tively, to the same specific volume v1 (Fig. 1). 
Since both states have the same energy E0 , which 
depends only on the volume, the pres sur~ differ­
ence ~P == P 2 - P 1 = ~PT is accounted for by the 
thermal energy difference ~E = E2 - E1 = ~ET. 
From (2) 

(15) 

Here v 00 is the initial volume of the porous iron 
and P 2 is the shock compression pressure of the 
porous iron. The constants y and h are obtained 
on the basis of (15) from the equations 

_1_= t:.ET =...!_[v0oP.-v0P1 -I]. (16) 
y v1!1P T 2 (P2 - P1)v1 ' 

h = (voo I Vo) P2- P, (~). 
P 2 -P1 v1 

(16a) 

The available experimental data on the dynamic 
compressibility of porous iron (in Table II) permit 
us to obtain y and h for two degrees of shock 
compression. The values of these parameters are 
given in the last two columns of Table II. For the 
transition from the dynamic adiabate to the isotherm 
T = 0, h is more important at high compressions, 
that is, in the region where the thermal components 
of the pressures are relatively large. In subse­
quent calculations, we shall assume h = 2.25. 

The values of the cold compression energy E0 

and of the pressure P 0 = - aE0 /fJv calculated 
from (14) are given in Table III for pressures from 
0.3 to 5 million atmospheres. Also given are the 
pressures PH ( v ofv) of the shock adiabate for the 
compression of iron of normal density, which were 
calculated from the interpolation formula (9). 

Knowing the function E0 and its derivative, we 
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can now write an expression for the adiabate of 
shock compression from a state with the initial 
volume v00 ~ v0• Solving (13) with respect to PH, 
we obtain 

(h-1) aE(;/ av+ 2Ex /V 
Pfl(Voo; v) = - h I -Voo v 

(h -1) Pc- 2Ecfv 

h- V00/V 

(17) 

The curve P c of cold compressibility, the ex­
perimental adiabate of solid iron (9) and the adiabate 
of porous iron with initial volume v00 = 1.412v0 

are compared in P -v diagrams (Fig. 8). Ther­
mal pressure plays a strikingly large part, espe­
cially in the shock compression of porous iron. 

We note in conclusion that the equation of state 
(12) and the expressions that have been found for 
'Y and Ec are valid in the region bounded by the 
curve for cold compressibility P c and the shock 
adiabate of porous iron. 

5. EXTRAPOLATION OF THE COMPRESSIBILITY 
CURVE OF IRON 

The compressibility of matter at absolute zero 
can be studied by quantum statistical methods. 
However, the Thomas-Fermi and Thomas-Fermi­
:0irac statistical models of the atom hold true only 
at very high pressures of hundreds of millions of 
atmospheres, when the electronic shells of the 
atoms are pressed together and lose their individ­
ual structure .H 

At relatively low compression up to 2 or 3p0 

statistical methods yield highly exaggerated values 
of the pressures. Figure 10 is a logarithmic plot 
for iron of density-pressure curves which were 
computed by the Thomas-Fermi method11 and by 
the Thomas-Fermi-Dirac method, 11 with an ex­
change correction. According to Kompaneets and 
Pavlovskii, 13 the Thomas-Fermi-Dirac results are 
correct when the exchange correction is small, 
which undoubtedly occurs for eompression close 
to p = 8 -10p0• The lower branch of the compres­
sibility curve up to p = 1. 7 Po has been obtained 
experimentally by the present authors. 

From a knowledge of the upper and lower por­
tions of the function P c ( p) we are able to inter­
polate it satisfactorily for the intermediate region 
from p = 1. 7 Po to p = 8p0 ( see the dashed line in 
Fig. 10). The same graph shows Jensen's interpo­
lation, 14 which lies considerably above both the 
curve for Pc andthedynamicadiabate. The error 
in Jensen's curve resulted from the lack of experi­
mental information on the compressibility of iron 
at pressures of several million atmospheres. 
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FIG. 10. Extrapolation of the compressibility curve at 
T = {)°K. TF was computed with the Thomas-Fermi model; 
TFD was computed with the Thomas-Fermi-Dirac model; P c is 
an experimental portion of the isotherm T = 0; J is the iso­
therm T = 0 according to Jensen; PH is the experimental dy­
namic adiabat. The dashed line is the extrapolated portion of 
the isotherm T = 0. 

CONCLUSION 

Dynamic methods of investigating compressibil­
ity greatly broaden the experimental possibilities 
in high pressure physics. Our deceleration method 
is especially promising since it enables us to per­
form measurements up to a few million .atmospheres 
of pressure. We were thus able to determine the 
dynamic adiabate of iron with different initial densi­
ties from 4 x 105 to 5 x 106 atm. 

The dynamic adiabate of porous iron with its re­
duced initial density lies considerably higher than 
the adiabate of the solid material in the pressure­
density diagram. This is evidence of the 'large part 
played by the thermal components of the pressure 
in shock compression. 

On the basis of our experimental findings, we 
have derived an empirical equation of state for iron 
and have obtained the cold compressibility curve 
up to densities p = 1. 7 p0• The isotherm at T = oo 
has been extrapolated to pressures at which quan­
tum statistical methods of computation are applic­
able. 

The present work was undertaken at the sugges­
tion of Ia. B. Zel' dovich. In methodological and 
instrumental matters the authors were constantly 
assisted by V. A. Tsukerman and his co-workers 
E. A. Etingof, N. N. Lebedev and M.S. Tarasov. 



614 AL'TSHULER, KRUPNIKOV, LEDENEV, ZHUCHIKHIN, a'nd BRAZHNIK 

The successful conduct of the investigation was 
greatly assisted by advice and active participation 
in discussions on the part of E. I. Zababakhin, S. 
B. Kormer, E. A. Negin and G. I. Gandel' man. In 
the initial stages some very valuable experimental 
information was obtained by D. M. Tarasov and A. 
A. Bakanova. The numerous complicated experi­
ments were performed with the aid of the techni­
cians A. A. Zhiriakov, S. P. Pokrovskii and A. N. 
Kolesnikova. The authors are extremely gratetul 
to all of these colleagues. 

1P. W. Bridgman, The Physics of High Pres­
sure (London, 1931) ONTI, 1936. 

2 P. W. Bridgman, Recent Work in the Field of 
High Pressures, Revs. Modern Phys. 18, 1 (1946), 
Russ. Trans!. II L , 1948. 

3 P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 
76, 3, 55 (1948). 

4 L. D. Landau and E. M. Lifshitz, MexaHnKa 

5 H. D. Mallory, J. Appl. Phys. 26, 555 (1955). 
6 M. Walsh and R. H. Christian, Phys. Rev. 97, 

1544 (1955). 
7w. Goranson, D. Bancroft et al., J. Appl. Phys. 

26, 1472 (1955). 
8 Bancroft, Peterson and Minshall, J. Appl. Phys. 

27, 291 (1956). 
9 E. Grlineisen, Handbuch der Physik, 1926, Vol. 

10, pp. 1-59. 
10 Ia. I. Frenkel', CTaTIICTnqecKaH <fln3HKa 

(Statistical Physics), Acad. Sci. USSR Press, 1948. 
11 P. Gombas, Die statistische Theoi:-ie des 

Atoms und ihre Anwendungen (Wien, 1949). 
12 N. Metropolis and J. R. Reitz, J. Chem. Phys. 

19, 555 (1951). 
13 A. S. Kompneets and E. S. Pavlovskii, J. Exptl. 

Theoret. Phys. (U.S.S.R.) 31, 427 (1956); Soviet 
Phys. JETP 4, 328 (1957). 

14 H. Jensen, Z. Physik 111, 373 (1938). 

crrJIOIIIHhlx cpe;IJ; ( The Mechanics of Continuous Media ) , Translated by I. Emin 
GITTL, 1953. 176 

SOVIET PHYSICS JETP VOLUME 34(7), NUMBER 4 OCTOBER, 1958 

DYNAMIC COMPRESSIBILITY OF METALS UNDER PRESSURES FROM 400,000 TO 

4,000,000 ATMOSPHERES 

L. V. AL'TSHULER, K. K. KRUPNIKOV and M. I. BRAZHNIK 

Submitted to JETP editor December 28, 1957 

J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 886-893 (April, 1958) 

A method for the determination of pressures and densities of shock compressions is proposed 
which is based on the measurement of the velocities of propagation of strong shock waves. 
The dynamic compressibility of copper, zinc, silver, cadmium, tin, gold, lead and bismuth 
were measured by this method in the pressure range from 400,000 to 4,000,000 atm. The 
highest degrees of compression (by factors 2.26 and 2.28) were observed in lead and bismuth, 
which possess the largest atomic volumes. The highest absolute density ( 32.7 g/ em 3 ) was 
recorded for gold. 

INTRODUCTION 

DYNAMIC methods of investigation in high pres­
sure phys1cs are based on the compression of mat­
ter by means of strong shock waves. Experimen­
tally measurable parameters of shock waves are 

these parameters, from mass and momentum con­
servation we obtain the density 

D, the velocity of propagation of a wave front in 
an undisturbed medium, and U, the velocity of 
matter behind the wave front. Having determined 

p = p0D / (D - U) (1) 

and the pressure of a shock compression 

P = p0UD. (2) 

For the complex determination of shock wave 
parameters we1 have developed two methods of in-




