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A closed set of equations is obtained for the random functions Nqp ( t). This set determines 
the number of particles at a given point p, q in phase space at time t, and the vector and 
scalar potentials A, cp. Chains of coupled equations for the moments of the random functions 
have been obtained by averaging from this set of equations. The equations are solved under 
the assumption that the random process in the system is stationary and uniform. Expressions 
are obtained which permit determination of space-time correlation functions of currents, 
densities, and vector potentials from a knowledge of simultaneous (equilibrium) correlation 
functions. Expressions are obtained for correlation functions of "extraneous" random electro­
magnetic fields and currents. In the absence of space dispersion these expressions become the 
familiar formulae derived by Leontovich and Rytov phenomenologically. An explicit expression 
is obtained for the complex dielectric constant of the medium 

IN determining temporal correlation functions of 
random processes or space -time correlation func­
tions for random fields we can introduce the con­
cept of "extraneous" random forces or fields for 
which the correlation functions are known. Thus 
Rytov1 has investigated fluctuations of the electro­
magnetic field by introducing extraneous emf's or 
extraneous fields, for which the correlation func­
tions are assumed to be known. Similarly, the 
theory of hydrodynamical fluctuations is con­
structed by introducing "extraneous terms" with 
known correlation functions into the equation of 
motion of a fluid.2 

It is the object of the present paper to obtain a 
closed set of approximate equations for the space­
time correlation functions of a system of particles 
with electromagnetic interaction. 

A similar problem for a classical system of 
particles with Coulomb interaction was considered 
by Tolmachev, 3 who used Bogoliubov's method to 
obtain a chain of equations for nonsimultaneous 
correlation functions. Through an approximate 
solution of this chain of equations Tolmachev4 ob­
tained an expression which relates the space-time 
correlation function of a system of charged parti­
cles with Coulomb interaction to the correlation 
function for T = 0. 

In his investigation5 of the spectra of elemen­
tary excitations in a system of centrally-interact­
ing particles, the present author used the follow­
ing equation for the random function: 

N 

Nqp (t) = ~a (q- qi) a (p- p;), 
i=l 
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which defines the number of particles in the phase 
space region dq dp around the point q, p at time 
t. For the random function Nqp (t) there exists 
a multidimensional distribution function F ( ... 
Nqp ... , t) for the probabilities of different val­
ues of Nqp. The quantum analog of Nqp ( t) is 

N~~ > (t) = (27rf3 ~ 'F+(q - 1/ 2 h-t) 'T'(q + 1/ 2 1i.'t) e-i~rd-t, 

in which ..p-+ and "IJ1 are quantized wave functions 
which satisfy the familiar commutation relations. 

In Ref. 6 the equations for Nqp ( t) and ~ ( t ) 

were used to obtain chains of equations for nonsi­
multaneous distribution functions for systems of 
centrally-interacting particles. In the present 
paper the same method is used to investigate space­
time correlation functions for a classical system 
of particles with electromagnetic interaction. 

1. The Hamiltonian function of a classical sys­
tem of N charged particles can be represented 
as follows: 

H =curl A, 
1 ()A 

E = - grad cp - cat , divA= 0. 

Here a Coulomb calibration has been used, by which 
the Coulomb interaction between particles can be 
distinguished immediately. It is assumed that 
electron charges are compensated by uniformly 
distributed positive ion charges. 

If the vector potential is regarded as the field 
coordinate and the quantity 

n = - E/4"c = A/47rc2 + grad cpf4r:c 

as the field momentum, one can introduce a distri­
bution function 

for the probabilities of different values of the co­
ordinates and momenta of both the particles and the 
field. The equation for f can be obtained by means 
of a Hamiltonian equation corresponding to the 
Hamiltonian ( 1 ). The equilibrium solution of this 
equation is the Gibbs distribution. 

The equation for f could be used to determine 
the space-time correlation functions. In the pres­
ent work, however, we shall use a different method 
which is essentially as follows. We introduce the 
random function 

N 

Nqp(t) = ~a(q-q;)o(P-P;), 
i~l 

which defines the number of particles in the phase­
space region dq dP around the point q, P at time 
t. By means of this definition we represent the 
Hamiltonian ( 1) in the equivalent form 

!7t = ~ 2~ (P-7 A (q) rNqpdqdP + e ~ cp (q)NqpdqdP 

+ 4~ ~Egradcpdq+ 8~ ~(E2 +H2)dq. 
( 2) 

The positively charged ionic background can be 

taken into account explicitly if f Nqp dP is re­

placed by f NqpdP - n+, where n+ is the num­

ber of ions per unit volume. 
Using the Hamiltonian ( 2), we obtain Hamilton's 

equations for the particles and variables which 
characterize the field: 

• a a!ft ( e ) 
q = (Jf>IJNqP =' P- cA jm) (3) 

p =- ~~ __i!!_ = 
()q IJNqP 

- ~ ~ IQ~q'l Nq'P' dq'dP'- 2~ aaq ( p -fAr I (4) 

A = o :7t ;en = 4r.c2n - c grad cp, 

IJH 1 e ~ ( e J - - =-L1A+- P -- A. N PdP IJA 4r. em c q ' 

L1cp =- 4rce ~ NqP dP, divA =0. 

(5) 

(6) 

(7) 

From Eqs. ( 4) and ( 5) and the continuity condition 
we derive an equation for the random function 
Nqp (t ): 

aN qP + ~( P _ ..:._ A ) aN qP 
at m\ c ()q 

() ' e2 , , ()NqP 
- ()q \ [q -q'l Nq'P'dq dP ·-;rp- (8) 

1 () ( e )2 ()NqP 
-2;aq P--eA --ar=O. 

In ( 5) ..... ( 8) we have a closed set of equations for 
the random functions Nqp and A, TI, cp. 

It will be convenient hereinafter to use, instead 
of the canonical variables q, P, the variables 
q, p = P - eA/ c and the field variables A, A 
= 47rc2TI- c grad cp. Then NqpdqdP becomes 
Nqpdq dp, where Nqp (t) is the number of par­
ticles in a region dq dp around a point q, p of 
phase space at time t. After the transformation, 
Eqs. ( 5) - ( 8) become 

()Nop p aNq, { d'f e • e }aNqp 
at +~naq-- eaq+cA -;,c-P X H ap- = 0; 

(9) 
1 ()2 A 1 a 41te \ I I 

L1A-c2-7512= catgradcp-cm .)p Nqprdp; (10) 
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~'¥ =- 47te~ Nqpdp, divA= 0. ( 11) 

The Hamiltonian function ( 2) in these variables 
has the simple form 

Equations ( 9) - ( 11) correspond in external form 
to the set of self-consistent equations for the par­
ticle distribution function and electric and mag­
netic field strengths which was considered by Vla­
sov7 and a number of other authors. Unlike the set 
of self-consistent equations, ( 9) - ( 11) are given 
for the random functions Nqp (t ), A, A and in 
this case for a total description it is also neces­
sary to know the distribution function 

F ( ... . Nq) (t) . .. , A ... , ... A ... ). 

This procedure permits us to obtain from ( 9) -
( 11) a system of chains of equations for functions 
which determine average values of different com­
binations of Nqp (t) and A (q, t) at different 
points of space and at different times. For this 
purpqse, ( 9)- ( 11) must be averaged by means 
of F after they are multiplied by Nq' p' ( t' ) , 
A ( q', t' ) or their combination. The first two 
equations of the chains are obtained by direct av­
eraging of ( 9)- ( 11). Using a bar to denote av­
eraging by means of F, we obtain 

( e a!\ e ) aNqp + -- - + --- p X H - = 0 
e at me ap ' 

( 13) 

(14) 

In Eq. ( 13) the scalar potential cp was eliminated 
by means of ( 11 ). 

Averages of the products of random functions 
are called moments; therefore ( 13) and ( 14) are 
the first and second moments of Nqp (t) and 
A (q, t). 

Keeping in mind the relations 

Nqp (t) = Nfl (q, p, t), 

Nq, (t) Nq'p'(t) = N (N- I) f2 (q, p, q', p', t) 

+ Nf 1 (q, p, t) o (q -q') o (p-p'), 

where f1 and f2 are the first and second distribu-

tion functions, it follows from ( 13) and ( 14) that 
self-consistent equations for the distribution func­
tion f1 and the electric and magnetic field strengths 
are obtained only when correlation effects can be 
neglected. 

All second moments can be expressed in terms 
of the following three second moments: 

M<2l = Nqp (t) Nq'"' (t'); S~2l = Nqp (t) A" (q', t'); 

A~2J = Acx (q, f) A~ (q', f'), IX, ~ = J, 2, 3. 
(15) 

The equation for M(2) which is obtained by using 
Eq. ( 9 ) for Nqp ( t) is the following: 

a \ e• a M<sl ( · ' ' t' " " t) d "d " -aq-~lq-q'l a{) q,p,t,q,p, ,q,p, q P 

( e e ') aN qp {t) ( 16) + ·;nE +em p x H Nq'p' (t') _a_p_ = 0. 

Equations for s~) and A~~ are easily obtained 
in a similar manner. Equation ( 16) and the cor­
responding equations for S ~) and A~~ relate the 
second and third moments. This chain can be ex­
tended. In order to obtain an approximately closed 
set of equations, say for the second moments, the 
third moments in ( 16) and in the corresponding 
equations for s~) and A~~ must be expressed in 
terms of second and first moments. 

2. In the present paper we shall consider the 
case of a system of particles with electromagnetic 
interaction in which a stationary, uniform, random 
process occurs (see the review articles by Iag­
lom8 and Obukhov9 ). Here the second moments 
A <2~ and the moments s(2) and M(2) inte-

Ol~-'' Ol 
grated over the momenta, depend only on the ab-
solute values of the time difference T = It - t' l 
and the coordinate difference r = I q - q 1. In this 
case we also have Nqp ( t) = Np, i.e., the average 
particle distribution is unchanged in time and ho­
mogeneous in space, and E = H =A= 0. Deviation 
of the number of particles from the average value 
is denoted by c5Nqp ( t). Since E = H = A = 0 the 
deviations from the average values of these func­
tions coincide with the functions themselves. 

The averages of the products of deviations from 
average values will, as usual, be called central 
moments. The subsequent solution will be obtained 
in the approximation where it is possible to neglect 
third central moments in an equation for second 
central moments. 

For the purpose of deriving equations for sec­
ond central moments in the present approximation 
we first obtain from ( 9) - ( 11) the equations for 
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the deviations of oNqp(t) and A from their mean values: 

a'iSN q~ ...!?_ iJ'iSN q? - _a__\ e2 oN ' 'd I d I aN p - _!____ a A aFJf'__ = 0 
at + m aq aq j 1 q- q' 1 q P q p ap me at ap ' 

( 17) 

AA 1 a2A 1 a d \ e2 ·N d I d I 47te \ I ' .., d I 
u -& w=c-a~-gra J lq-q'l o q·~~ q p -;nc.)P o,.qp' p. ( 18) 

In ( 17) and ( 18) terms containing products of the 
deviations oNqp and A were omitted because 
these terms in the equations for second central 
moments give third centr-al moments, which we are 
neglecting in the present approximation. The term 
( e/mc) [p x H] 8Np/8p vanishes because Np = 
f ( p2). 

Three random functions will be of the greatest 
importance for what follows. These are nq ( t) = 

J Nqp dp -the number of particles at a given point 

of three-dimensional space at a given time, j ( q, t) 

X (e/m)JpNqpdp -the current, and A(q, t) -

the vector potential. These random functions form 
one scalar and two vector fields, all of which are 
stationary, uniform, and isotropic. 

In virtue of the condition divA= 0 the vector 
field A is purely rotational. The vector field of 
the currents can also be divided into potential and 
rotational parts: j = j(P) + j(r). 

According to a theorem proved by Obukhov9 the 
correlation functions of the veetor field can be rep­
resented as the sum of potential and rotational 
components. Moreover, 

nq (t) jlr) (q 1
, t 1

) = 0, 

i.e., uniform and isotropic scalar and rotational 
vector fields are not correlated. Finally, 

AjiP) = jiP) j<rl = graa nq · jlr) =grad nq ·A= 0, 

i.e., homogeneous and isotropic rotational and po­
tential vector fields are not correlated. 

It follows that in ( 18) there can remain only the 
rotational component of the vector on the right-hand 
side, i.e., 

fJ.A- _c12 ~2~~ =- _4c7t j(r). (19) 

Equations ( 17) and ( 19) will be the basis of our 
further study. 

Before proceding from ( 17) and ( 19) to the 
equations for second moments, we shall divide the 
former into two parts such that one part defines 
the potential part of the vector moments and the 
other defines the rotational part. We assume that 
the random function oNqp ( t) can be divided into 

two parts: oNqp = oNW + oN~ which satisfy the 

equations 

a'iSN~~ P a'iSN~~ a 1· e2 , (Pl I I aN P 
-a-t- + m- ----aq-- aq~ I q- q' I oNq'pl dq dp ap = 0, 

aaN~~ P a'iSN~~ e iJA aN P _ 
-at-+ rn:aq-- me 7ft ap- O, 

AA 1 a2A - 47t \ 'N(r) d - 47t "(r) "-' - C2 ----a£2 - - c J po qp p - - c J . 

(20) 

( 21) 

The Hamiltonian function is ch~ged accordingly. 
Thus in the variables q, p, A, A the expression 
for the departure of the Hamiltonian function from 
its average value is 

o:Yt = I .E. (oN1P> --1-- oN<r>) dq dp ~2m qp ' qp 

+ ~ \ e2 'ON(P) oN<~>, dq 1 dp 1 dq dp 
2 .) I q- q' I qp q P 

The foregoing partition of the initial_equations is 
somewhat analogous to the partition of the set of 
self-consistent equations for the distribution func­
tion f1 and the electric and magnetic fields into 
rotational and longitudinal parts, as was done by 
Vlasov in Ref. 7 and elsewhere. 

In the present case this partition is justified by 
the fact that the second moments calculated by 
means of the random function oN~ + oNW sep­
arate into the sum of uncorrelated potential and 
rotational components. 

We have, for example, 

Bnq (t) llnql (t 1
) '= on~P) (t) on*) (t 1 ) 

+ on~! (t) on*> (t 1
) + 2on~P) (t) on~~> (t 1

). 

Let us consider the last term. In virtue of the 
stationary, uniform, and isotropic conditions we 
have 

on~v! (t) on~~! (t 1
) =II (-r:, r). 

Using the continuity equations 

_j__on<P> + divJ"(P) = 0 divJ·cr> = 0, _a___on<r>=O 
at q ' at q • 

we obtain 8ll(T, r)/8T = 0 and thus ll(T, r) = 
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IT(O, r). But from (22) it follows that IT(O, r) 
= 0, so that the term in question really vanishes. 

The separation of the correlation function for 
currents into rotational and potential components 
follows directly from Obukhov's theorem. The 
same holds true for j ( q, t) A ( q, t ) . 

Let us now consider the correlation of the sca­
lar and vector fields: 

onq (f) j(q ,f') = on~P) j(P) + onr) j(r) + on~P) j(r) + on~r) j(P). 

The third term vanishes because the uniform and 
isotropic scalar and rotational vector fields are 
not correlated. The last term in this case can be 
represented by 

on~>j~P> (q', t') = B (-=, r) x,j r. 

Using the continuity equations, we obtain 

divq' on~r) (t) j~~) (t') = 0. 

Consequently, 

g-(Bx jr) = ~!}_ + B' = 0, 
axa; a; r 

whence it follows that B = C/r2, where C is a 
constant of integration. From the boundary con­
dition of the correlation function at zero C = 0 
and B = 0. 

3. We now obtain the equations for second mo­
ments and investigate the solutions of these equa­
tions. 

Equation ( 20) agrees with the corresponding 
equation in Ref. 6, where equations for the corre­
lation functions of a centrally-interacting particle 
system were considered. Multiplying ( 20) by 
t5Nq1 p1 ( t1 ) and averaging, we obtain an equation 
for M ( r, T, p, p1 ). The superscript "p" can be 
omitted here. 

a1V1_ +laM 
at m aq 

a~ 2 @ 
____ e M(q'-q" 1: p" p')dq"dp'-P =0. (23) 

aq I q - q, I , , , ap 

Expanding M in a Fourier integral with respect 
to r, and using a Laplace transform with respect 
to T, we have 

M = (21t~4 i ~ ~ Mks (p, p') e•~-ikr ds dk ( 24) 

after which, when the solution is found by Landau's. 
method in Ref. 10, we arrive at the following ex-
pression: 

~M(r, "• q, p')dpdp'=M(1:, r) 

\ Mk(O, p) 

- 1 \\ .\s-ikp!m dp s~-ikrd dk (25) 
- {2ft)4i .\ .\ 4ne2 ( ik aN P --1 ap e s . 

1 + ¥ .\ s- ikp I m dp 

Equation ( 25) agrees with Tolmachev's solution.4 

The solution of (25) expresses M(T, r) in terms 
of the correlation function for T = 0: 

g(r) = M(O, r)jn2 -o(r)jn; n = ~Npdp. 

An expression for this function is lmown in some 
cases. 

We now consider Eqs. ( 21) for t'>N~ ( t) and 

A. Multiplying both equations by 6N~~~ ( t) and 
averaging, we obtain for the functions 

M<rJ =oN~~ (t) oN~~~~ (t'), s' <rJ =oN q'p' (t') A (q, t) 

the closed set of equations 

aM(r) p aM(r) e as<r> aJJP 
----at + m -----aq - me ----at Tp = 0 I 

lls<'·l- __.!___ a2s<rl = - 47t .!!____ \ p' M<'l dp'. 
c2 at 2 c m. .\ 

(26) 

( 27) 

When in these equations we represent M(r) and 
S (r) by Fourier integrals with respect to the co­
ordinates and perform a Laplace transformation 
with respect to time [see Eq. (24)], we obtain the 
following equations for the transformation ampli­
tudes: 

(s- i ~) M{r) (p p')-~ s(r) (p') atJP 
m ks ' me ks ap 

= M<rJ (0 p p') - __:___ s<rl (0 p') atJ, 
k ' ' me k ' ap ' ( 28) 

( ;: + k2) sl:..' (p') = ~: ~ p" M~~ (p', p") dp" 

s s<r) (0 ') 1 ( a s<r) ( ')\ + ~. k ' p + &- ar k "· p J~~o. (29) 

Eliminating S~rJ. ( P1 
) in these equations, we obtain 

( ikp) {r) , 47te2s \ H {r) , " "aN p 
s - m Mks (p, P ) - m (s2 + c2k2) .\ p Mks (p , p ) dp ap 

= Mk (0, p, p') (30) 

e (r) , 2 2 (r~ , P a } at:i 
+me (s2+ c2k2J{sTtS (1:, p)- c k S (" ,p) ~-o ap. 

We now divide ( 30) by s - ikp/m, multiply by 
pp1 and integrate over p, p1• We direct the vee-
r I (r)( H I I • J p Mks p , p ) dp along the y axis. For the 

divergence of the vector we have 

divq' ~ p' M(r) (q", q', p", p') dp' = 0, 

since divq j(r)(q, t) = 0. Therefore 

k J P1 Mr-J ( p", P1 
) dp1 = 0 and, consequently, the 

vector k can be directed along the x axis. Then 
the integral of the second term in the left-hand 
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side of ( 30) can be represented as 

P' (p"p) M(r) (p' p") 
4rre2s ( P y ks • N d d ' d " ( 31) 

m2 (s2 + c2k2) xT j s- ikp x 1 m P p p p · 

In ( 31) the integrals which contain the products 
PxP~ and PzP~ vanishsince Np=f(p2). Using 

the notation 

~pp' M[~l(p, p')dpdp' = (j(q, t)j(q',t'))ks, 

we obtain 

~pp' M}:) (0; p, p') e I me \ aN { a l < l 1 
. I dpdp'+ _2_•_2 '(pp') --~ s I sLr (-r.p')-c2k2Skr (-r. p') dpdp' 

(j(r) jlr))ks =, S -zkp, /1! S +k•C , ap a. 
2 

T-0 (32) 
1 4rr·•2s C p Y N ~ d 
+ m2 (s2 + c2k2) ><.T j s - ikp xI m p 

From ( 32) we obtain an expression for the cur­
rent correlation function: 

j<•l(q,t)jtrl(q',t') =(2rr~•i ~~(j(rlj<•l)ksesT-ikrdsdk. (33) 

This relation expresses the space-time correla­
tion function for currents in terms of simultane­
ous correlation functions. 

From a comparison of ( 25) and ( 33) it follows 
that the space-time density correlation function is 
largely determined by the form of the expression 

(34) 

which is the dielectric constant of a medium in 
which random longitudinal osc.illations are occur­
ring. When ( 34) is equated to zero we obtain the 
dispersion equation which was investigated by 
Vlasov7 and Landau}0 

From ( 33) it follows that the space-time cor­
relation function for eddy currents is determined 
by 

l rre s y ~ d 4 2 ~ p2 N 
+(s2+c2k2)m2 ><.T s-ikp,;m p. (35) 

It will follow subsequently that ( 35) is associated 
with the dielectric constant of a medium in which 
random transverse oscillations are taking place.* 
When this expression is equated to zero we obtain 
the dispersion equation for transverse oscillations 
which was considered by Vlasov.7 

By setting the real part of ( 34) equal to zero 
we obtain the frequency of longitudinal random 
oscillations. For example, for long waves the fre­
quency and decrement <Tk ~f random longitudinal 
oscillations are given by the formulas 10 

,_,2 = ,_,2L + 3r2d kz, c; -. / ~ (k )-3 -i.'r'<i/2 
~ ~ h = wL V 8 r" e 

*Expressions for the dielectric constant of a plasma, based 
on e{uations involving, a self-consistent field, were studied by 
Gertsenshtein. 11 

where rd is the De bye radius. 
The corresponding formulas for ( 3 5) when 

Wk/k » .J KT/m are 

(36) 

It will become clear from what follows that the 
magnitude of <Tk is associated with the imagi­
nary part of the dielectric constant for transverse 
oscillations. Since Npx = 0 for Px > me it fol­
lows from ( 36) that <Tk = 0 when wk/k > c, i.e., 
the damping vanishes for waves whose phase ve­
locity is greater than the speed of light. These 
waves cannot be excited by thermal motion and 
thus do no contribute to thermal fluctuations. This 
fact limits the wavelengths of random transverse 
oscillations. For example, oscillations with the 
frequency Wk R! WL which contribute to thermal 
oscillations can have only wave numbers for which 
k 2! WL/c = 1/<5, where c5 = ( mc2/47Te~)t/2. 
These results can be obtained in a more consist­
ent marmer by using the relativistic equation for 
Nqp(t). 

4. In this section we shall derive expressions 
for the space-time correlation function of the vec­
tor potentials A(r, T) =A(c(, t')A(q, t), by 
means of which we can obtain correlation functions 
for the electric and magnetic field strengths. We 
shall then establish the correspondence of these 
results with the expressions for the correlation 
functions of extraneous currents and electric and 
magnetic fields that were obtained phenomenolog­
ically by Leontovich and Rytov .12.1 Multiplying 
( 21) by A ( q', t' ) , averaging, expanding into a 
Fourier integral with respect to r, and taking 
the Laplace transform with respect to T, we ob­
tain for the functions 

co 

Sks (p) = ~ ~A ( q', t') oN~1 (t) e-ST+ikr d' dr, Aks, 
0 

the following equations 
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( ikp) es iJNP s- -- Sks (p) - --- Aks---;,- = Sk (o: = 0, p)-\ m me vp 

e . ()NP 7) -me {A (q', t') Ai (q, t)h. ,~o ap' ( 3 

( k2 + -£-)As = ~Ttf ~ pSks (p) dp + -::2- Ak (o: = 0) 

+ :. (A (q', t') A (q, t))k. ,=o. ( 38) 

If Sks (p) is eliminated from these equations and 
we perform transformations similar to those em­
ployed in deriving ( 32), we obtain the following 
equation for Aks: 

k2 ~ I ~ P Y d A { •( 42~Np2 } + e2 + sm'x.T s-ikpxfm p ks 

+ 4rce \ pSks dp. 
me ~ s- ikp I m 

(39) 

When the left-hand side of ( 39) is equated to the 
corresponding part of the equation for a medium of 
dielectric constant E we obtain 

E = I 4rce• \ N P d . 
ks + sm2x.T J s - ikp x I m p (40) 

Equation ( 39) can then be written as 

(k2 s•sks) A- = ssks A ('t: = 0) + 4rce \ pSks (p) d · + e• ks e2 k me ~ s- tkp I m p 

+-:. (A (q' ,t') A (q, t))k, ,=o. ( 41) 

This enables us to obtain 

A('t:, r)=A(q', t')A(q, t) = (2~)•i ~~Ase'"-ikrdsdk.(42) 

Equations ( 41) and ( 42) express in general form 
the space-time function of the vector potentials by 
means of equilibrium correlation functions ( corre­
lation functions for T = 0). 

We now turn to the comparison of ( 41) and ( 42) 
with the corresponding expressions which were ob­
tained phenomenologically by Rytov (see also the 
book of Landau and Lifshitz 13 ), and ascertain under 
what conditions is it possible to derive the expres­
sions given by the latter for the correlation func­
tions of extraneous random electric and magnetic 
fields. 

We first take it into account that the dielectric 
' . " constant is a complex quantity: Eks = Eks + lEks. 

It follows from ( 40) that 

4w and Ekw depend generally on both w and k, 
i.e., both temporal and spatial dispersion occur. 
The space-time correlation function diminishes 
quite rapidly with increasing T and r, so that 
instead of a Laplace transformation it is possible 
to use the one-sided Fourier transformation. The 
coefficients of the expansion determine the energy 
distribution of the thermal oscillations with respect 
to frequencies and wave numbers. In ( 41) we now 
replace s by Jw [as was done in deriving ( 43)] 
and assume AA = 0, pS (T = 0, r, p) = 0. Then 
( 41) can be written as 

(c2k2 - w:Ekw)Akw= iwzkwAk ('t: =0). ( 44) 

From a comparison of ( 44) with the correspond­
ing equation in Rytov 's paper1 we conclude that the 
right-hand side of this equation represents the co­
efficients in the Fourier integral for the space-time 
correlation function of the extraneous electric in­
duction D. Separating the real part, we obtain 

(45) 

When the spatial dispersion can be neglected, 
( 45) becomes 

( 45') 

We have considered that in this case Ak ( T = 0) 
= 47rKT I w 2• From ( 45') we obtain 

(46) 

Equations ( 46) and ( 45) agree with the correspond­
ing equations of Rytov. 

From the comparison of these results we see 
that the microscopic approach permits us to ob­
tain an explicit expression for the dielectric con­
stant and to derive more general relations which 
are also valid when spatial dispersion is present. 

By a similar comparison in a quasi-stationary 
approximation we obtain an expression for the space­
time spectral function of extraneous currents: 

(jkwj~w)extr= 2wk2E~wAk('t: = 0) / (47t) 2 • ( 47) 

When spatial dispersion can be neglected we 
obtain from ( 47) 

(48) 

Ow (q) j: (q'))extr= 2cra (q- q'). 
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Here E" = 47Ta/w and a is the conductivity. 
Equation ( 48) agrees with the expression obtained 
by Leontovich and Rytov .12 

We note once more that by the present method 
there is no need to introduce the concepts of "ex­
traneous" random currents and fields, since all 
space-time correlation functions can be expressed 
in terms of simultaneous correlation functions. 
The correlation functions of extraneous currents 
and fields in the phenomenological theory are 
equivalent to approximate simultaneous correla­
tion functions. 

Using ( 9)- ( 11) for the random functions 
oNqp (t), A, and cp, we can also obtain equations 
for the equilibrium correlation functions. In the 
approximation where third central moments are 
dropped, the equations for simultaneous correla­
tion functions can be obtained from ( 20) and ( 21). 
Thus, for example, the equation for the correlation 
function M(P) ( r, 0, p, p' ) in the present approxi­
mation is obtained from ( 20) in the form 

P oM(P) p' oM(P) 

fi!aq + m--aQ' 

a ~ e2 aJiJ - --- M(P) (q" - q' p' p") dq" dp" _P oq 1 q - q" 1 ' ' op ( 49) 

---- (p) II " , II P' a ~ e2 oN 
oq' Jq'-q"JM (q -q, p, p)dq dp ap;-=0. 

This equation agrees with the corresponding equa­
tion obtained in Bogoliubov 's book14 by expansion 
with respect to a plasma parameter. The corre­
lation function which is obtained from the solution 
of ( 49) agrees with the De bye correlation function. 

By means of (21) or the corresponding equa­
tions in the variables q, P, we can obtain equa­
tions for the equilibrium correlation functions of 
the rotational fields which have been considered. 
This is an independent problem and will be con­
sidered separately. 

In conclusion we shall make two additional com­
ments. Vector fields are characterized by a cor­
relation tensor. For homogeneous and isotropic 
fields the correlation tensor is entirely determined 
by two scalar functions. We have obtained above 
expressions for the diagonal element sums of cor­
relation tensors for the current and the vector po­
tential. The diagonal element sum of a correlation 
tensor is expressed in terms of the two scalar 
functions which determine the tensor. A second 
equation that relates these functions is the Karman 
condition for random rotational fields. These for­
mulas thus enable us to obtain the correlation ten­
sor. 

The solution that has been given above is valid 

whenever third central moments can be neglected. 
This is a poor approximation when collisions be­
tween particles of the system play an important 
part. However, the applicability of the foregoing 
formulas can be extended considerably if collisions 
are taken into account by introducing into the right­
hand side of ( 2 0) and of the first equation in ( 21 ) 
the terms 

-voN~~ (t), -vaN~~ (t), 

in which v is the frequency of the collisions. In 
this approximation all of the formulas derived 
above remain valid when s - ikp/m is replaced 
by s + v - ikp/m. For example, the expression 
for the dielectric constant becomes 

The method which has been described can be ap­
plied to the study of a quantized system of parti­
cles with electromagnetic interaction and for a 
system of electrons interacting with lattice vibra­
tions. It is thus possible, in particular, to obtain 
corresponding microscopic expressions for the 
relations of Callen and Welton. 
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Stability against small perturbations of the discontinuity surface is investigated for shock 
waves in an arbitrary medium, described by relativistic equations for an ideal fluid.* 

1. INTRODUCTION 

THE concept of an ideal fluid is applicable in two 
limiting cases of relativistic hydrodynamics: at 
sufficiently low temperatures, when the mean num­
ber of produced pairs is much smaller than the 
number of virtual particles, and in the ultra-rela­
tivistic case of super-high temperatures, when the 
mean number of pairs is much larger than the num­
ber of virtual particles. In fact, it follows from 
the equations t 

aT~ I axk = 0, T;k = WU;Uk + pg;k (1.1) 

that the entropy flux density satisfies the equation 

(1.2) 

In the first case, which we shall call relativ­
istic, the equation of continuity holds for the num­
ber of particles in zero approximation of the ratio 
of the mean number of pairs to the number of par­
ticles 

an1 1 ax1 = o. (1.3) 

In the ultra-relativistic limit the chemical po­
tential is equal to zero in zeroth approximation of 
the ratio of virtual particles to the number of pairs: 

*In classical hydrodynamics this problem was solved by 
D'iakov. 1 

tOur notation follows Ch. XV of the oook by Landau and 
Lifshitz. 2 

fL = 0. (1.4) 

In both limiting cases (and only then ) , the en­
tropy is conserved: 

ao1 1ax1 = 0. (1.5) 

It should be noted that, as shown by Khalatni­
kov,3 it is possible to obtain the equations for the 
ultra-relativistic case, (1.1) and (1.5) from Eqs. 
(1.1) and (1.3) of the relativistic case by a simple 
substitution: 

w-->-Tcr, n-->-cr, (1.6) 
and putting p. = 0.* We shall make use of this re­
sult later. 

*Thermodynamical relations necessary for the complete­
ness of the system (with exception of the equation of state) 
remain valid after the substitution (1.6), in view of Eq. (1.4): 
if fL = 0, n does not enter into the thermodynamical identities, 
and w = Ta. The equations for the ultra-relativistic case can 
therefore be obtained at any stage from the relativistic equa­
tions if one does not use the equation of state explicitly. If 
the boundary conditions are obtained directly from the equa­
tions, or if there is no condition imposed on n at the bound­
ary, then the above procedure permits us to obtain the corre­
sponding solution for the ultra-relativistic case from the so­
lution of the boundary problem. 

If we note that conditions at hydrodynamic discontinuities 
do not follow from equations of the ideal fluid, but represent 
additional physical requirements (following from the equations 
with dissipation), it becomes clear that the substitution (1.6) 
is applicable to tangential and is inapplicable to normal dis­
continuities, since n enters the boundary conditions for the 
latter. 


