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Expressions are derived for the drift velocity of ions of isotopes in a mixture of isotopes. The 
principal interaction between the ions and atoms is assumed to be pure charge exchange. 

IN connection with the problem of the distribution 
of isotopes in a direct current discharge, the ques­
tion of the mobility of an ion of an isotope in an 
isotopic mixture becomes of interest. In view of 
the possibility of charge exchange between an ion 
of one isotope and an atom of another isotope, 
Blank's rule for the mobility of ions in a mixture 
is not applicable in the given case. 

Let there be a mixture of two isotopes with con­
centrations of neutral atoms N1 and N2• We shall 
denote the Maxwellian velocity distributions of the 
atoms by n1 ( v) and n2 ( v). Let the concentra­
tion of ions be Nt and Nt and their velocity dis­
tribution functions be f1 ( v) and f2 ( v). As is 
usual in problems on mobility, we shall disregard 
the effect of the ions on the velocity distribution 
function of the atoms and the interaction of the ions 
among themselves. The chief process of interac­
tion between the ions and atoms is, in the given 
case, the exchange of charge without an exchange 
of momentum ( pure charge exchange model ) , for 
which the charge-exchange cross section q ( u) 
can be considered the same in all four processes 
A+ A, A +B, B+B and B+ A. In the presence of a 
constant homogeneous electric field E, directed 
along the z axis, the velocity distribution function 
for the ions is found from a system of two kinetic 

equations, the first of which has the form 

~!, Nt ~~'; = N ,Nt ~ uq (u) [n1 (v) f 1 (v')- f 1 (v) n1 (v')] dv' 

+ N,Ni ~ uq (u) n,(v) f 2 (v') dv' 

- Nt N2 ~ uq (u) f 1 (v) n2 (v') dv', (1) 

where M1 is the mass of an atom of the first iso­
tope and u = I v - v' 1. The second and third terms 
on the right describe the appearance of A ions as 
a result of impacts of the type B+ A and their dis­
appearance upon impacts of the type A +B. The 

second kinetic equation is obtained from Eq. (1) by 
an interchange of indices. 

Let us solve the system of kinetic equations in 
the limiting cases of weak and strong fields. For 
small fields, when the energy acquired by an ion 
over a mean free path is much less than the ther­
mal energy, we apply the method of Langevin, who 
assumes the velocity distribution of the ions to be 
Maxwellian with a small superimposed drift in the 
direction of the field: 

[ 1 (v) =A, exp {- 2~; [v! + v; + (v:- v1 ) 2l} 
(2) 
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An analagous expression is obtained for f2 ( v). 
The law of con~ervation of the number of par­

ticles is obtained from Eq. (1) by integration over 
the velocities. As a result, using Eq. (2), we obtain 

Nt IN,= Ni I N2. (3) 

This result is a consequence of the fact that, in our 
setting up of the problem the formation and disap­
pearance of ions proceeds, only with charge ex­
change and that the charge-exchange cross sections 
for impacts of the type A+B and B+ A are as­
sumed equal. The unknown drift velocities v 1 and 
v2 are determined from the momentum balance 
equations that are obtained if each of the kinetic 
equations is multiplied by VzdV and integrated 
over the velocities. After simple calculations, 
using Eqs. (2) and (3), we obtain a system of two 
equations, the first of which has the form 

3y;teE 1 jM,+M2 
16 M1 V 2kT 

(4) 

The second equation is obtained from the first by 
an interchange of indices. Here the following nota­
tion has been introduced: 

00 

1'12 = y~, = ~:; P = + ~ e-xx2q (u) dx; 
0 

00 

M 1Mz u 2 

M 1 + M 2 2kT. R = ~e-xxq(u)dx; X= 

0 

P 1 and P 2 are obtained from P by replacing the 
reduced mass by M1/2 and M2/2 respectively. 
The expressions for v 1 and v2 are easy to obtain 
from the system of Eqs. (4), but we shall not write 
them out because of their unwieldiness. For the 
case where the charge exchange cross section can 
be regarded as independent of velocity, P 1 = P 2 = 

P = R = q, and we obtain 

3V1r eE (4 V(t + Y21l ;2 + t) c2 + (2 . .:. 3y21 ) c, (5) 
v, = 1{) M1q (N1 + N2 )VkTjM1 c~ (2 + 3 Y2d + c;(3Y Y12+ 2Yy2,) +2-'/zc,c2 3Yy,2(1+Y2I)+4J(1+y2,)'1z ' 

where c1 = Nt/(Nt + N2), c2 = N2/(Nt + N2). 
We obtain the expression for v2 from Eq. (5) 

by an interchange of indices. In the special cases 
where c2 = 0 or M1 = M2, Eq. (5) goes over to 
the ordinary formula for the drift velocity of ions 
in their respective gas.1 For the case where 
c1 -o, 

3V1r eE 4Ji'(t+y2,)/2+1 (6) 
v, = 16 M,qN2 VkT/M2 3 + 2y21 

In the general case for the ratio of the drift veloci­
ties of ions of two isotopes, we obtain 

v1 (4V(t+y21)!2+1)c2+ (2+3y2,)c, 

; = (4 V ( 1 + y12) 12 + 1) c1 + (2 + 3yl2) c2 
(7) 

From Eq. (7) it is possible to find the limits 
within which the ratio of the drift velocities of ions 
in an isotopic mixture varies with a change in con­
centration from c2 = 0 to c 1 = 0. For example, 
for a mixture of hydrogen with deuterium we find 
that v 1/v2 lies between the limits 1.8 and 1.7; for 
a mixture of He3 with He4, it is within the limits 
1.27 and 1.25. The results obtained refute the as­
sertion to the effect that as a result of frequent 
charge exchanges a homogeneous drift velocity is 
set up for ions of both isotopes.2 The drift veloc-

ity of an ion of the lighter isotope noticeably ex­
ceeds the drift velocity of an ion of the heavier 
isotope. 

One frequently encounters the case where the 
mixture contains a third component besides atoms 
of isotopes (for example, molecules of isotopes ) . 
Here, the interaction of ions with particles of the 
third component does not have charge-exchange 
character (the interaction depends essentially 
upon polarization forces). In this case the kinetic 
equation (1) contains additional terms on the right 
side, which take into account collisions of ions of 
isotopes with particles of the third component. 
Using Langevin's method, we obtain a system of 

two linear equations in v 1 and v2, the first of 
which differs from Eq. (4) by the additional term 

(8) 

Here b13 is the mobility of an ion of the first iso­
tope in the third component ( in the Langevin ap­
proximation): 

e 3 V;t. / :!.kT - -- 1 
b13 = kT 1tiN3 V h1 1M 3 (M, + Ms) y_-; 

L = -~ ~ Q13 (u) x~e-xdx; 
0 
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N3 and M3 are the concentration and mass of 
particles of the third component and Q13 is the 
diffusion interaction cross section for ions of the 
first isotope with particles of the third component. 
The second equation for v1 and v2 is obtained 
from the first, as usual, by the interchange of the 
indices 1 and 2. In the presence of several addi­
tional components, each of them gives an additional 
term of the type of Eq. (8) in the right side of 
Eq. (4). 

For the case of strong fields where it is possi­
ble to disregard the thermal motion of the atoms 
we obtain, by a method completely analagous to that 
applied in Ref. 3, an exact result for the drift veloc­
ity of an ion of an isotope in an isotopic mixture 

v1 =[2eEjr:MI(N1 +N2)q]Y,. (9) 

This result is obtained under the assumption that 
the charge exchange cross section is independent 
of velocity ( in the method applied this need not 

necessarily be so, and is assumed for simplicity). 
The drift velocities in this case are inversely pro­
portional to the square roots of the masses of the 
ions. This conclusion is physically obvious inas­
much as in the assumption of quiescent atoms the 
difference in their masses plays no role. 
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Formulas are derived for the polarization and cross section of slow neutrons scattered in 
crystals with polarized nuclei. 

RosE 1 has examined the polarization effects aris­
ing in the scattering of slow neutrons in crystals, 
and has obtained formulas for the scattering cross 
section of polarized neutrons in crystals with 
polarized nuclei. He considered only crystals of 
atoms with a single isotope. In the present note, 
his results are generalized to include crystals of 
several isotopes, and expressions obtained for the 
change in neutron polarization due to scattering. 

It is well known2 that the scattering amplitude 
for slow neutrons in a crystal is proportional to 
the quantity 

(ffL' !.S eiqgi ( Ai + i Biati) I i[L) = F, (1) 
j 

where i and f are the initial and final states of 

the scatterer; fJ. and J.L' are the initial and final 
neutron spin projections; a/2 is the neutron spin; 
q is the momentum transferred to the scatterer; 
Rj and Ij are the coordinates and spins of the 
j-th nucleus; and Aj, Bj are complex constants. 
The summation is over all the nuclei in the crystal. 

From (1) it is easy to obtain the following ex­
pression for the coherent and incoherent parts of 
the scattering cross section, averaged over all 
orientations of the neutron and nuclear spins, and 
over all possible distributions of isotopes in the 
lattice: 

acoh = a<o> {I +I (A) \- 2 [(pN) Re (A') (BI P) 
coh 

(2) 


