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We also note that the pseudospinor treatment of the neutrino leads to the Salam condition5 of invariance 
with respect to the transformation '1/;;- y51/lv• introduced by him as a postulate. Also, the possibility of 
applying pseudospinors to other fermions is not excluded. 

Note added in proof (Sept. 18, 1957). We should mention the interesting possibility of mixed spinors of 
the first kind with respect to space (time) reflections and of the second kind with respect to time (space) 
reflections. We also note that in the case of nonconservation of parity with invariance with respect to the 
Salam transformation, 5 a new law of conservation of "neutrino charge" holds, with a current density de
fined by a pseudovector. 

1T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956); 105, 1671 (1957). 
2 E. Cartan, Le~ons sur la theorie des spineurs, Paris, 1938. 
3 1. S. Shapiro, Usp. Fiz. Nauk 53, 14 (1957). 
4 L. Lederman et al., Phys. H.ev. 105, 1415 (1957). Castagnoli, Frazinetti, and Manfredini, Proc. 

Avogadro Congress, Turin, 19515. 
5 A. Salam, Nuovo cimento 4, 1 (1957). 
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A nonlinear theory of pha~;e oscillations induced by radiation fluctuations in electron synchro
trons is considered. It is shown that the nonlinear theory gives essential correction to results 
of the linear theory. The nonlinear theory predicts greater electron losses and imposes upon 
synchrotron parameters stronger restrictions than does a linear theory. 

IT is well known1 that the quantum nature of radiation causes phase oscillations of electrons in synchro
trons. The mechanism of exciting these oscillations is similar to that described by Sokolov and Ternov2•3 

for exciting betatron oscillations. 
Sands1 calculated the mean square deviation of the electron phase oscillations induced by radiation for 

a weak-focusing synchrotron. The calculation was performed in the linear approximation with a neglect 
of the existence of limits to the phase oscillations. Such a calculation is valid only for small oscillations. 
These results have been generalized in the same approximation to the case of strong-focusing synchro
trons.4-6 

The linear theory of phase vibrations treated by Sands, 1 Kolomenskii,4 and the present author5•6 is 
valid only for small deviations of the electron phase from its equilibrium value. In general, however, this 
assumption does not resolve the fundamental problem, that of determining the loss of electrons caused by 
these oscillations. In order that an electron be removed from further acceleration, it is necessary that 
its phase of oscillation be outside the allowable limits. As is well known, the left limit is cps, the nega
tive of the equilibrium phase. The boundary cp 1 on the right is given by 

sin 'h + sin'f's- ('f'l + 'f's) cos 'f's = 0. (1) 
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Thus in order that an electron reach the limits, its phase must change by 2cps to the left or by 2cp 1 

- <Ps to the right, and these are relatively large durations. If, for instance, <Ps = 458
, these deviations 

must be 2cps :::: 1r/2 and cp 1 - <Ps :::: 7r/4, respectively, which can in no sense be considered small. The 
linear approximation is therefore insufficient for an investigation of the theoretically fundamental problem 
of loss of electrons due to phase changes. One may thus question the accuracy of the predictions of the 
linear theory, and it becomes necessary to formulate a nonlinear theory without assuming small devia
tions of the electron phase from the equilibrium value. 

In the present article we shall consider certain problems of the nonlinear theory of phase oscillations 
induced by quantum radiation fluctuations. 

The method for deriving the nonlinear stochastic equation describing phase oscillations induced by 
radiation is entirely analagous to that for obtaining the linear stochastic expression, Eq. (2) of one of the 
author's previous works.6 This nonlinear stochastic equation is 

.. . k(j)a[ ~ ] 
<jl + 1'\1+ f2 [cosrps- cos (rp. + q;)] = TE w.-£.J e18 (t- t 1) , 

s I 
(2) 

where tJ; = cp - <Ps• cp is the phase with which the electron passes through the high-frequency field, <Ps 
is the equilibrium value of this phase, € 1 is the energy of the photon emitted at the instant i, k is the 
number of the accelerating harmonic of the high-frequency field, R0 is the radius of curvature of the 
curved sections of the synchrotron, I\ = 1 + L/211R0, L is the total length of the linear sections of the 
synchrotron per revolution, 

w = c I R01.., f2 = (kw~rx 12 d.) (ev0 1 E.), 1 = (4 -rx) (2wr0 13R0) (Esl mc2) 3 , 

r0 = e2 I mc2 , a <R> I <R> = rxoE IE, W. = (2 ce2 I 3 R~) (Es / mc2) 4 , 

and ev0 is the amplitude of the high-frequency field. 
If tJ; is assumed small, Eq. (2) can be linearized and leads to Eq. (2) of the work cited.6 

As is well known, the problem is generally solved in the following way. One first obtains a solution 
to the homogeneous Eq. (2) in the form of a Fourier series whose coefficients and frequencies depend on 
some parameter. The right side of the equation· is then treated as a small perturbation, and the effect of 
this perturbation on the small parameter of the homogeneous solutions is investigated to find its effect on 
the solutions obtained. Accounting for the chance nature of the small perturbation makes it possible to 
clarify the statistical properties of the desired solutions. 

This method of solution is hardly practical, however, in view of the many calculations necessary, even 
with computers. We shall therefore use a somewhat different method which is sufficient to answer the 
most important questions. 

We first change to a new independent variable ~ and to a new function z in Eq. (2), using 

t ~ 

~ = ~ f dt, <jl = uz, u = exp (--} ~ q d~), q = ~ + f, (3) 

where the primes indicate differentiation with respect to ~· Then Eq. (2) becomes 

, 1 ( ) ( 1 1 ') kw1 [W ~ , (t. •·)] z +--u[cosrp.-cos rp.+uz ]- 4 q2 +z-q'. z = "AE.uf 1s- LJs1o --~~ , 
(4) 

' where 

In this equation the term 
(5) 

can always be neglected. Indeed, denoting D.cEs the synchronous energy change per period of synchro
tron oscillation, we obviously obtain 

f~ /l~~· <S 1• + ~ [ ~0 (:c. rr <S: 1. (6) 

Therefore I q I « 1. Similarly, I q' I « 1. 
The homogeneous equation corresponding to (4) can be written 
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z" + u-1 [cos 'Ps- cos ( 'fs + uz)] = 0. (7) 

We note further that u' = -qu/:2 « u. We therefore multiply (7) by z' and integrate the product, bearing 
in mind the above inequality, thus obtaining a constant of the motion in the form 

Q = 1/ 2 z'2 + u-2 [uz cos 'Ps- sin ('fs + uz)]. 

It follows from (8) that bound states will exist only when the constant of the motion satisfies 

If, however, Q for any reason leaves the interval given in (9), the particle moves to infinity; in other 
words it leaves the accelerating process and is lost. 

(8) 

(9) 

Let us now return to Eq. (4). It is seen from this equation that the mechanism of exciting phase oscil
lations consists of discretely changing, by emission of photons, the rate at which the phase of a particle 
varies. It is also seen that emission of a photon of energy E produces a change l:!.z' of magnitude 

L1z' = - (kCJYY./AEsuf) s. (10) 

Equation (8), on the other hand, shows that the mean change that chance discontinuities l:!.z' cause in 
the constant of motion is given by 

(11) 

which can be rewritten, using (llO): 

(12) 

It follows that if at ~ = 0 the ellectron is at rest on the bottom of the potential well given by (9), the mean 
value of Q for other values of ~ will be 

In order that radiation-induced phase oscillations cause only small losses, we must have <Q> « 
Qmax· According to Eq. (13) this can be written 

The stronger the inequality (14), the lower the radiation-induced electron losses. It is clear that for 
<Q> = Qmax practically all the electrons will be lost. 

Performing the calculations :indicated in (14), we have 

55rc karo ( r0 )2 he ;e;- f ( ( ) ( E8 ) 6( Es )'J, . 
48 V3 -A- R;; 7 J evo ~ exp - ~ I d't . mc2 7v;- d't ~ sm 'fs- 'Ps cos 'Ps· 

0 . -r 

(13) 

(14) 

(15) 

If we now note that 1/y is much greater than the period of oscillations of the system we are treating and 
is much larger than the period of acceleration, we can show that 

t t 5 E 'f, r- 2 

\ exp ( __ \"' dt)(2 \) (-5
) d't <S: 3Ro J/ .2 (~) J \ j 1 .mc2 ev0 "'2(4-a)r0ro ev0 me" ' 

0 -r 

(16) 

in which equality is achieved only if (a) the left side increases monotonically, in which case the equality 
occurs only asymptotically at infinity, or (b) if the left side has a maximum, in which case the equality is 
attained at this maximum. We note that in actual accelerators it is case (a) which is realized. The proof 
of (16) and the corrolary assertions follow immediately from the identity 

X X X X 

:x ~ exp (- ~ 1 d't) f ('t) d't = f (x) -1 ~ exp (- ~ 1d't) f ('t) d't. (17) 

0 0 -r 
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On the basis of (16), Eq. (15) can be written in the convenient form 

F (E)~ f1 ('.Ps). 

where 

F (E)_ 55n: ka r 0 he me! ( E5 ) 3 

-16Y:fJ. (4-a) R;eoev; me2 ' 

fi(tps) = 2(sintps-tpsCOStp5 ). 
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(18) 

(19) 

(20) 

This is the fundamental requirement which must be fulfilled according to the nonlinear theory if the 
electron losses due to phase oscillations induced by quantum radiation fluctuations are to be small. 

Let us compare the linear and nonlinear criteria. According to Eq. ( 8) of the previously cited work, 6 

the criterion of the linear theory can be written 

F (E)~ (l2j8) sin lfs = f2 (tps), (21) 

where l. denotes the region of permissible phase oscillations. For various values of CfJs• f1 and f2 are 

fi ('!'s) 0.011 
ft ('!'s) 0.018 

One thus obtain, approximately, 

30" 

0.09 
0.15 

0.3 
0.5 

60" 

0.7 
1.2 

This means that(18), the requirement given by the nonlinear theory, is stronger than (21), that of the 
linear theory. 

(22) 

As an example let us consider an unsegmented weak-focusing synchrotron whose parameters are n = 0.6, 
R0 = 400 em, ev0 = 100 kev, and k = 4. If we then express E in Bev, we have F(E) = 0,16 E3• To be 
specific let us take the equilibrium phase to be cps = 45° . One then sees that for the linear theory the 
left side of (21) will be about half the right side at 1.3 Bev. The nonlinear theory, on the other hand, 
makes the left side of (18) about half the right side at 1 Bev. The linear theory thus leads to the conclu
sion that under the above conditions the synchrotron will cease operating somewhere in the neighborhood 
of 1.3 Bev. The nonlinear theory, however, leads to the conclusion that the synchrotron will actually stop 
working at an energy near 1 Bev. 

The nonlinear theory thus gives essential corrections to the linear theory. We note that the nonlinear 
theory of phase oscillations induced by quantum radiation fluctuations verifies the conclusions5- 1 that 
strong focusing is unavoidable at electron energies of several Bev. 
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