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Se = - Xep.0dsjdx. 

Let us compare this ·with the flux of radiant energy, Eq. ( 3), using Eq. ( 4) to obtain the gradient of the 
internal energy. We obtain 

s. I Srad = (le( lrad) ve( D, 

where Ve is the thermal velocity of the electrons. 
Calculation shows that the fluxes are comparable only at very high temperatures "'300,000°. At lower 

temperatures: Se << Srad. 
The difference between the electronic and the ionic temperature has an essential effect only on the 

structure of the temperature peak behind the discontinuity, but this in no way influences the behavior of 
the effective temperature of the wave. 
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On the basis of the theory proposed by Landau for a Fermi liquid the attenuation and dis
persion of sound oscillations in such a liquid are investigated. Specific calculations are per
formed for the case of liquid He3• 

THE characteristics of sound in a Fermi liquid are determined by the kinetic equation for the excita
tions, which, according to Landau, 1 has the form 

(1) 



DISPERSION OF SOUND IN A FERMI LIQUID 85 

Here E is the energy of a single excitation, a function of the excitation density n. For small deviations 
of the distribution function n from the equilibrium Fermi distribution at T = 0 ( n0 ), the function € can 
be represented in the form 

e = s0 + ~ f (p,p') n 1 (p') d-r:p' (n1 = n- no)· (2) 

Let oscillations in the excitation density n take place within the liquid with small amplitude v1 and 
frequency w. n1 can now be written in the form 

We substitute ( 3) in Eq. ( 1), confining ourselves to terms linear in n1 

-iwn1 + in1k ~~·- ik a;;~ f (p, p') n1 (p') d-r:p' = I (nl). 

We now recall that the derivative 8n0/8E has the form of a a-function, and introduce the notation 

v1 = von0 jos, f (o-r:ios), e, = F. 

We now rewrite Eq. ( 4) in the form 

{ \ do'}8n0 (kv- w) v + kv .\ F'l' lm: a£- = I ( as) v =a-p. 

(3) 

(4) 

(5) 

(6) 

The function F evidently depends only upon the angle -It between the momenta p and p', since in the 
approximation under consideration these vectors are equal in absolute value to p0• In the general case 
F is a complicated function of the angle fJ • Therefore the function v is likewise a complicated function 
of the angle between the vectors k and p. 

Landau has shown2 that at absolute zero, where the collision integral I is equal to zero, Eq. ( 4) 
leads to the occurrence of undamped oscillations ( zero sound). The velocity of propagation of these 
oscillations is determined by a transcendental equation ( cf. Appendix) involving in a fundamental way 
the function F ( 3 ). We do not know the form of this function; knowing the effective mass of the excita
tion and its compressibility, however, we can determine F and F cos -It from the formulas ( cf. Ref. 1) 

1/m=(ljm')(I+Fcos&), (7) 

c2 = (p~j3m2)(1 +F)j(l +Fcos&) (8) 

Specific calculations for He3 can therefore be carried out, taking the function in the form of a binomial 

F = F 0 + F 1 cos-&. (9) 

At temperatures different from zero ordinary sound will be propagated in the Fermi liquid. For low 
frequencies w the attenuation of the sound is determined by the usual expression3 

(10) 

here y is the sound attenuation coefficient, 1J is the coefficient of first viscosity, ~ is the coefficient of 
second viscosity, K is the thermal conductivity coefficient, and c is the specific heat. In the case of 
the ideal gas model, for which the Fermi boundary surface has the form of a sphere, the second vis
cosity coefficient is very small. 4 The first viscosity coefficient varies with the temperature as 1/T2• 

The ratio K /cp, equal in order of magnitude to 1), also varies as 1/T2 (K,...., 1/T, cp,...., T). The term in
volving K/cp, however, is multiplied by the factor ( cp- cv) /cv. This ratio, as can readily be seen from 
the well-known relation 

varies with the temperature as T 2 ( 8p/8T ,...., 8S/8V ,...., T ). At low temperatures this factor is extremely 
small. Therefore at low temperatures the attenuation of sound is determined entirely by the viscosity. 

Eq. ( 10) is valid for the case in which the frequency of the sound is low and the inequality WT << 1 is 
fulfilled; T is the time between collisions of the excitations. The time T is inversely proportional to the 
square of the temperature. 4•5 The above inequality will be violated both at sufficiently low temperatures 
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and at sufficiently high frequencies. If the frequency of the sound is sufficiently high that the reverse 
inequality wr » 1 applies, this signifies that collisions between the excitations play no part, and that the 
collision integral may be neglected. In this case, however, the oscillations investigated by Landau2 (zero 
sound) can be propagated in the Fermi liquid. It is of interest to follow the process by which the tran
sition from ordinary sound to zero sound takes place as the frequency w is increased. For this it is 
necessary to solve the kinetic equation ( 4 ). We shall not solve this difficult problem for the general 
case, particularly in view of the fact that the interaction law for the excitations is unknown. 

It would be possib1e to simplify the problem by introducing a certain effective time r and substi
tuting for the integral I in ( 4) the expression n1 /r. With such a substitution, however, the conserva
tion laws for number of excitations, momentum, and energy will not come out of the kinetic equation, 
making the transformation to hydrodynamics impossible. Since the thermal conductivity and the second 
viscosity are negligibly small in the present case, the terms in the collision integral which involve the 
zero and first spherieal harmonics are absent. We shall therefore replace the collision integral by the 
following expression:* 

(11) 

It can readily be seen that when integrated over drp this expression reduces to zero. It also reduces 
to zero when multiplied by p cos 8 and integrated over drp.t Thus the conservation equations for the 
number of particles and for the momentum are automatically fulfilled. Thus, from ( 4) and ( 11 ), the 
final kinetic equation has the following form 

\' do' 1 - --
(kv cos.&- w) v + kv cos & .) Fv' 47t = - Tr (v- v- 3v cos & cos&). {12) 

Bearing in mind the applicability of these results to He3 we write the function F in the binomial form 
of Eq. ( 9), in order not to complicate the problem. 

We introduce the notation 

( 13) 

following which we readily obtain, from ( 12) 

( 14) 

We next solve this equation for v and compute v = v0 and v cos it=vt/3. We thus obtain for the two quan
tities v0 and v1 the two equations 

(15) 

( 16) 

where 

1 ~ + 1 
w = TIn~_ 1 - I. 

Solving Eqs. ( 15) and ( 16) simultaneously we obtain an equation which determines the complex sound 
velocity 

(I+ ;a)(!+ ~')-w{(I+ ~')(F0 -;a)+~2 (Fl-ta)(I+ ~1a)}=0. ( 17) 

This is the desired equation expressing the dependence of the velocity of sound upon the frequency, 
or, in other words, describing the dispersion of sound in a Fermi liquid. Let us first consider the two 
limiting cases. 

a) Low frequencies: wr << 1. In consequence, a- 0, ~a-- 1, ~ - oo. Expansion of the function w 
in powers of 1/ ~ yields 

*Here and below we indicate by a superscribed line a quantity averaged over angle. 
tin this integration only the range of values for the momentum near Po are of imp,;.rtance, since in 

accordance with ( 5) the function n1 includes a o -function at p = p0• 
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w = 1/3~2 + 1/ w 
and, after some simplification, Eq. ( 17) takes the form 

(I + ;, r = 3~2 (I + ~1 
) ( F o- ;, ) + 5~2 (I + ~~) ( F 1- :, ) · 

From the relations ( 13) we have 

( 1 + ~")2 = ( _c::_)2 . 
cr \ lw 

From ( 18) and ( 13) we find, to the first order in iwT 

( "',z 1 ( f 1 ) 4 . ( f 1 ) 7W) = 3 (I + F 0 ) I + 3 - 15zw"' I + 3 . 
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( 18) 

(19) 

The first term corresponds to the velocity of ordinary sound in a Fermi liquid, The attenuation of sound 
in the region wr << 1 is obtained in an elementary fashion from ( 19), as the imaginary component of the 
wave vector: 

(20) 

Comparing expressions ( 20) and ( 10) we set up the relation 

(20') 

which eneables us to find the time T from experimental values of the viscosity. At the present time data 
is lacking on the viscosity of He3 at temperatures below the degeneracy temperature. There are availa
ble only preliminary data (by K. Zinov'eva) in the temperature region near the degeneracy temperature. 
From these data we obtain the very rough value 

't ~ 0.4. 10-12 r-2 sec.· 

With this we obtain for the attenuation coefficient 

1 .~ I. J0-1s (w/T)2 em -1. 

b) We now consider the second limiting case of high frequencies and low temperatures: wr » 1. In 
this case 

cr--7-XJ, ~cr-7C\J, ~=-=s+t;', ~~~~~~s. 

Eq. ( 17) assumes the form 

(I+ F,/3) + w (s) {(1 + F,/3) F 0 + s2F 1} ~.·. 0. (21) 

This equation agrees completely with the equation determing the velocity of zero sound [ cf. Appendix, 
Eq. (AS)] u0 = sv. 

As regards the attenuation of zero sound, in order to calculate this it is necessary to find the imagi
nary component of the sound velocity ~ ', From ( 19) we obtain the equation 

t' f_1_ (1 + !i.) (-s __ w (s) + 1 \ _ 2 .. ( ) p } - _1_ {( 1 + Ii) ( 1 1 w (s)) ..L w (s) s2 (3 -- F ) 1 ~. 0. 
' lw (s) 3 s" -1 s ) SW S 1 hlT \ .::\ T 1 1 J (22) 

With the aid of Eq. ( 13) we find the attentuation coefficient 

·; ~ ... lm h = I / so:v - w~' / s2v. (23) 

If we substitute in this the values of the parameters for He3 ( s = 1.84, v = 1.13 x 104 em/ sec) we obtain 

(24) 

The attenuation of zero sound is thus independent of frequency and increases with increasing tempera
ture as 1/r; i.e., proportionately to T2• 

In conclusion, we shall comment upon the attenuation of sound in a Fermi liquid at extremely low 
temperatures, for which the inequality tiw » kT holds. It is evident that in this region the classical 
treatment is inapplicable. The attenuation process must here be treated quantum -mechanically. 

Detailed calculations performed by Landau2 yield for the attenuation of sound in this limiting case the 
following results: 
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'[ = '[ci (I+ ('liw;2::kT) 2), (25) 

'Ycl is determined from Eq. ( 23 ). Since rT2 = const., we have in the limit nw » kT 

In the quantum region the attenuation of zero sound is independent of temperature and is proportional 
to the square of the frequency. 

APPENDIX 

The integral equation for the velocity of zero sound derived by Landau2 has the following form: 

( v cos fi - u) v ( B , cp) + v cos u ~ F ( & ) v (iJ', c;-') d4 °~ = 0, (Al) 

tl = ( (J' cp', (Jcp). In Ref. 2 the solution of this equation is given for the case in which the function F ({}) is 
independent of the an!~le ,'}. We shall derive here the solution of Eq. ( 4) at T = 0 for an arbitrary func
tion F ({}). 

In the general case F ({}) can be represented as a sum of spherical harmonics 

(A2) 

Here the F n are the coefficients in the expansion of F ({}) in Legendre polynomials. We substitute ( A2) 
in ( Al), using the addition theorem for Legendre polynomials 

n 

Pn(&)= S P'/:(~)P'/:(fJ')eim[<e-<e'l (n-Jml)!/(n+Jmj)!, 
rn=-n 

where P~ = P~m are the associated Legendre polynomials. After making the substitutions indicated 
above we obtain 

(v cos 0- u) v + V cos 0 S i~ ~I: :;i P'/: (0) F neim'l' ~ P'/:(fi') v (0', cp') e-imq>' :~ = 0. (A3) 

We introduce the notation 

F (n-/mi)! \P'/:(0')'1(6','!),')e-im<e' 4d: =CVnm 
n (n +I ml )! J ,. (A4) 

and solve ( A3) for v ( s = u/v); 

'I = - ~~" cp pm (B) eim'P cos 6 -s .::::.J nm n (A5) 

Setting this expression into the relatiorl ( A4) and carrying out the integration over cp', we obtain 

F (n- J m J)! \ '"'pm (C) cos 0' pm (!Y) do' D "<D ' 
n (n + I m /)!.) .::::.J n j cos l:l' _.I k -=;-;t ( fun = .::::.J kmOf<n· 

h k 
(A6) 

We have thus obtained a system of homogeneous equations determining the quantity <Pkm. This sys
tem is separated into independent subsystems corresponding to various values of m. It follows from 
Eq. (A6) that in a Fermi liquid at absolute zero there can be propagated oscillations of various types, 
distinguished basically by a differing dependence of amplitude upon the angle cp. To the value m = 0 
there correspond oscillations for which v is isotropic in the plane perpendicular to k. For m I= 0 the 
oscillations are polari.zed in a definite manner in this plane. The number of types of oscillations is de
termined by the number of possible values of m ( lm I :::: n ). The propagation velocity for the oscillations 
is determined from the condition that the determinant of the corresponding system be equal to zero: 

I ' + F nm ( ) · 0 (N > k ' I) nm ( ) _ (n- I m J)! \ pm (~') cos 0' pm (fi') ~ 
"kn'; nHkn s I = """ n, : m ' Hkn s - (n + I m I)! J I< cos 6'- s n 4rr. (A7) 
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In view of the fact that Pif = P~m the coefficients nro are independent of the sign of m, so that oscilla
tions differing in the sign of m are propagated with the same velocity. 

From (A 7) it is evident that the equations for the velocity are transcendental. In the general case 
they do not always posses real roots. Cases are possible, however, in which there are some real roots. 
These correspond to certain types of oscillations having identical polarization in the plane perpendicular 
to k. 

We shall consider as an example the case for which the function F (-3-) includes only the zero and first 
harmonic [Eq. ( 9 )]. Here the coefficients nf&. are 

1 

no _ 1 (' xdx _ I s I s + 1. _ ., • 
,·'oo -- 2 .) x - s - - 2 n s - 1 - - "''' !.110 = QOl = .., -- = - sw o o 1 ~ x 2 dx 

"" x-s ' 
-1 -1 

1 1 

no = .!._ \. x3dx = _1 __ s"w nt = !_ \ (1- x') xdx = ~ [(s2 _ I) w _ \]. 
11 ~Jx-s;) '1l 4.) x--s 2 cl 

-1 -1 

For the velocity of propagation of oscillations of the type m = 0 we obtain, after substitution into the 
determinant (A 7), the equation 

(A8) 

For the case m = 1 we obtain the equation 

W= (f 1 -6)j3ft(s~- 1). (A9) 

This equation has one real root for F 1 > 6. 
We shall now conclude with the application of these formulas to the case of liquid He3• We do not 

possess any extensive information concerning the function F (-ll); knowing the effective mass and the com
pressibility, however, we can determine F and F cos .(} from Eqs. ( 7) and ( 8) of the text. It is there
fore reasonable to confine ourselves to the approximation ( 9) for F. It follows from the temperature 
dependence of the entropy, in accordance with Ref. 6, that 

rr!'" = 1.43m (He3). 

Data on the compressibility yield c = 195m/sec. From this we find F 0 = 5,2 and F 1 = 1.3. Using these 
values it follows that to the oscillations of the type m = 0 there corresponds the single velocity (the root 
of Eq. (A8)) 

s = ujv = 1.84, u = 206 m/sec. 

Oscillations of the type m = 1 are absent (as are all those for m > 1 ). It is of course possible that this 
result is due to the crudity of the approximation we have chosen for F ({}), but we see no reason to draw 
such a conclusion. 

From Eqs. ( A8) and ( 8) we can obtain for the velocity of sound c the following approximation rela
tion characterizing the width of the region of dispersion: 

(u-c)fc=2/5(F0 + 1). 

For the case of He3 the width of this region is on the order of 10m/sec for a velocity c,..., 200m/sec. 
In conclusion the authors wish to express their gratitude to L. D. Landau for numerous discussions. 
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