
1242 G. E. PUSTOVALOV 

tigations of the interaction between the 1T -meson in 
the mesonic atom with the nucleons of the nucleus.15 

In conclusion, the author expresses his gratitude 
to Professor D. D. lvanenko for reviewing the manu
script. 

1J, A. Wheeler, Revs. Mod. Phys. 21, 133 (1949). 
2 A. D. Galanin and I. Ia. Pomeranchuk, Dokl. Akad. 

Nauk SSSR 86, 251 (1952). 
3 Deser, Goldberger, Baumann, and Thirring, Phys. 

Rev. 96, 774 (1954). 
4 J, A. Wheeler, Phys. Rev. 92, 812 (1953). 

5 B. A. Jacobson, Phys. Rev. 96, 1637 (1954). 
6 W. Lakin and W. Kohn, Phys. Rev. 94, 787 ( 1954). 

7L. N. Cooper and E. M. Henley, Phys. Rev. 92, 801 
(1953). 

8 A. I. Akhiez,er and V. B. Berestetskii, Quantum 

Electrodynamics, p. 376, Gostekhizdat, M. 1953. 

9 P. Gombas, Many-Particle Problem in Quantum Me

chanics, (Hussian trans!.) p. 20, IlL, M. 1952. 
lOG. E. Pustovalov, J. Exptl. Theoret. Phys. (U.S.S.R.) 

'Z7, 758 (1954). 
11 A. B. Mickelwait and H. C. Corben, Phys. Rev. 96, 

1145 ( 1954). 
12E. H. Wichmann and N. M. Kroll, Phys. Rev. 101, 

843 ( 1956). 

13Koslov, Fitch, and Hainwater, Phys. Rev. 95, 291 
(1954). 

14 Stearns, Stearns, de Benedetti, and Leipuner, Phys. 
Rev. 95, 1353 (1954). 

15 Stearns, Stearns, de Benedetti, and Leipuner, Phys. 
Rev. 97, 240 (1955). 

Translated by J. G. Adashko 
295 

SOVIET PHYSICS JETP VOLUME 5, NUMBER 6 DECEMBEH 15, 1957 

On the Structure of the Front of Strong 
Shock Waves in GasE~s 

IU. P. RAIZER 
Academy of Sciences, U.S.S.R. 

(Submitted to JETP editor November 29, 1956) 
J, Exptl. Theoret. Phys. (U.S.S.H.) 32, 1528-1535 (June, 1957) 

The internal structure of the front of strong shock watves is investigated, taking account 
of radiation. Approximate solutions of the equations of the mode are found. Profiles of 
the hydrodynamic quantities, density and radiation flux, are constructed. 

ONE OF THE METHODS of study of shock waves 
in gases (in particular, in air) is photometric 

measurement of the brightness of the wave front. In 
a certain amplitude interval, the shock wave front 
radiates like a black body. Consequently, it is 

possible to determine the temperature behind the 
wave front directly, by photometry. Combined with 
the measurement of another parameter of the wave, 
for example, its velocity, this allows us to make 
some suppositions concerning the thermodynamic 
functions of the gas being studied. The question 
arises, up to what amplitudes does the visible tem
perature coincide with the temperature behind the 
shock wave, and what is its dependence on the 
actual temperature behind the front when the latter 
reaches tens and hundreds of thousands of degrees, 
since at the present time such powerful shock waves 

are becoming the subject of experimental investiga-

tion. 1 This question leads, first of all, to the prob
lem of the internal structure of a shock wave front, 
taking account of radiation. 

This problem was investigated by Prokof'ev, 2 who 
obtained •correct integrals of the approximate equa
tions in the separate regions in which the variables 
are continuous. However, as a result of an errone
ous analysis of the equations, he joined these solu
tions in an incorrect way, which led to the continu
ity of the hydrodynamic variables in the wave. Pro
kof' ev' s e:rror was pointed out by Zel' dovich, 3 who 

gave a correct qualitative analysis of the approxi
mate equations of the mode, and proved that there 
is a discontinuity of the hydrodynamic variables in 
the shock wave. 

In the present article, approXImate solutions are 
found of the equations of the mode, encompassing a 
broad interval of shock wave amplitudes, as well as 
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the case of thermal waves, in which the propagation 
of energy in the gas takes place not hydrodynami
cally, but by means of radiant thermal conduction, 
as proposed by Zel' do vi ch and Kompaneets. 4 

The physical meaning of the regularities of the 
behavior of the hydrodynamic quantities and the 
quantities characterizing the radiation is made 
quite evident by the extreme simplicity of the ap
proximate solutions, which conserve the fundamen~ 
tal qualitative characteristics of the phenomena and 
are sufficiently accurate. 

In the following article, the theory presented here 
will be applied to the propagation of waves in air. 

I. THE EQUATIONS OF HYDRODYNAMICS 
AND RADIATION TRANSFER, DESCRIBING 

THE INTERNAL STRUCTURE OF THE 
SHOCK WAVE FRONT 

We consider a stationary mode in a system of co

ordinates moving with the wave front. The x-axis 
is in the direction of propagation of the wave. The 
undisturbed gas flows into the wave with velocity 
-D (D > 0), equal in modulus to the velocity of the 
front. The hydrodynamic equations can be inte
grated and yield the conditions of conservation of 
the fluxes of mass, momentum, and energy, 

pv =-PoD, p + pv2 = PoD2, 
pv ( e + pIp + v2 / 2) + S = - p0D3 I 2. 

(l) 

where p, p, v, 8 and S are the pressure, density, 
velocity, specific internal energy and flux of radi

ant energy* at the point x. p0 is the density of the 
initial gas. The wave is assumed to be strong, so 
that the pressure and internal energy of the undis
turbed gas may be neglected. 

The pressure and density of the radiant energy is 
negligibly small in comparison with the pressure 
and energy of matter for the wave amplitudes under 
consideration. Only the flux of radiation in the vis
ible and near ultraviolet regions of the spectrum 
reaches "infinity", since air, like other gases, is 
opaque at higher frequencies. This flux is much 

*In general, S should include the flux of electron ther
mal conduction, which is considerably greater than atomic 
(ionic) thermal conduction, acting only inside the shock 
discontinuity. However, calculations presented in the 
following article indicate that in the first approximation, 
this flux may be neglected in comparison with the flux of 
radiant energy (in gases with normal initial density). 

smaller than the flux in the wave region that will be 
of interest to us, and we will omit it. 

For the explanation of the general character of 
the behavior of the variables inside the wave, the 
heat capacity will for simplicity be considered con
stant. Then, 

e=p/('y-1)p=RTI(1 -I), (2) 

where T is the temperature, R is the gas constant, 
y is the adiabatic exponent, (at high temperatures 
the effective magnitude of the adiabatic exponent, 
taking account of the expenditure of energy for ion
ization, is approximately 1.25). 

Behind the wave front, at x = -oo, the flux S be
comes zero. All quantities at x = -oo will be de
noted by the subscript l. 

By a simple calculation, we can obtain from Eqs. 
(l) and (2) expressions for the temperature and flux 
at a flowing point in terms of the reciprocal of the 
compression 7] = p0 / p at that point* 

S = PoDRT 1 (l - 'l/) ('ll- 'l/1) I 2'fJi (I ---'1)1), 

'l/1 = Po I P1 = (I - 1) I (I + 1), 

7] 1 = 0.111 when y = 1.25. 

(3) 

(4) 

The curve T(S) which is obtained from Eqs. (3) 
and (4) by eliminating ry, has two branches: one 
(ry-> 1, T-> 0, S-> 0) corresponds to the region in 
front of the shock discountinutty, the other (ry -> 7]1 , 

T-> Tt> S-> 0) corresponds to the region behind the 
discontinuity. 3 

As an approximation, we will consider the angu
lar distribution of radiation in the diffusion approxi
mation, replacing the rigorous kinetic equation for 
the intensity by a pair of equations for the density 
and flux of radiation. As a further simplification, 
we introduce a mean (over the spectrum) absorption 
coefficient x. = 1/l (l is the free path), having inte
grated the diffusion equations over the whole spec
trum. 

Eliminating the explicit dependence of the ab
sorption coefficient on the point by means of a 
transformation from the geometrical coordinate x to 
the optical thickness '"C by the well known formula 

*These formulas were derived by Prokof'ev in Ref. 2. 
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X 

d-e= x.dx, 't = ~ x.dx, 
0 

(the origin of coordinates x = 0 is located at the 
shock discontinuity), we may write the diffusion 
equations in the form 

dS / d': = c (UP - U), 

s = - (c I 3) dU I d-e. 

(5) 

(6) 

(7) 

where U is the density of radiant energy, c is the 

velocity of light, 

is the equilbrium radiation density, and a is the 
Stefan-Boltzmann constant. 

(8) 

In the general case the procedure of averaging 
over the spectrum is not rigorous, since the coeffi
cient of absorption is averaged differently in Eqs. 
(6) and (7). As will be eviden.t in what follows, av
eraging has a well defined meaning only in two lim
iting cases. Nevertheless, as an approximation, we 
will consider Eqs. (6) and (7) to be always valid. 

E:qs. (3), (4), (6), and (7), together with the nat
ural boundary conditions* 

't = + oo: S = 0, U = 0, T = 0, 

't = - oo: s = 0, 

U = (~q 1 = 4crTi/ c, T = T 1 

(9) 

(10) 

are the starting point of the present article, just as 
in Refs. 2 and 3. 

The order of the system may be lowered by divid
ing Eqs. (6) and (7) by one another, 

dS/dU=(c2 13)(U-L~~IS. (11) 

2. APPROXIMATE SOLUTION OF THE 
EQUATIONS IN THE CASE OF AN 

•oRDINARY" SHOCK WAVE, T, < Tk 

In the limit of weak waves, the role of radiation 
is negligibly small, and none of the hydrodynamic 
quantities depend on the coordinate, except for the 
discontinuity at the point x = 0. As the amplitude 
of the wave increases, the radiant flux S' =aT;_, is
suing from the surface of the discontinuity, and 
being absorbed by the layers lying in front of it, 
heats them more and more. 

*Of these six conditions, only two are independent, 
the remaining c>nes result from the equations. 

As was shown by Zel' dovich, 3 the greatest heat
ing temperature T_ that exists at the point x = 0 in 
front of the discontinuity cannot exceed 1'1 ; the 
greatest compression in the heating zone cannot ex
ceed in this case l/( l - rh) (equal to 1.13 at y 
= 1.25). Expressing S in terms of T through Eqs. 
(3) and (4) to within small quantities of the second 
order with respect to .,, we obtain the simple equa
tion 

S = Dr0 RT 1 ('1- I)= Dr 0s, (12) 

signifying that the energy of the absorbed radiation 
goes only toward raising the internal energy of the 
gas in front of the discontinuity.* The maximum 
possible error in Eq. (12) is no more than 1.7%. 

If S', the value of the flux at the point of the dis
continuity, is used in Eq. (12), we find the temper
ature in front of the discontinuity 

S 0 = Dp0 RT _I ( 1 - 1) · (13) 

In the case of sufficiently weak waves, S' "'aTi 
and T_ increases very rapidly with increasing wave 
amplitude. 

When the temperature in the heating zone is small 
compared with T, the temperature behind the front, 
the radiation density at any point in it, which is de
termined by the initial flux S' "' Ti, is consider
ably greater than the equilibrium density u eq 'V r 
at that point. In other words, the radiation gener
ated in the heating zone itself, contributes a small 

amount to the total flux and density. Under these 
conditions, neglecting U eq compared with U in Eqs. 
(6) and (ll), it is easy to find the solution of the 
system in front of the discontinuity t 

S=cVIV3=S0 exp(-V3't), -c>O, 
T·= T_exp(- V3't), -c>O. 

( 14) 

(15) 

Its limit of applicability is evidently the tempera

ture Tk at which Ueq(Tk) = U(Tk), or, using Eqs. 
(8), (12) and (14), 

4crT~/V3 = DroRThl (r- I). (16) 

*The work of compression and the change of kinetic 
energy, which are proportional to.,,, cancel each other 
to within r7f. 

t Essentially, our approximation consists simply of 
spreading the limiting form of integral curves, which orig
inate at a singular point of the saddle-point type at ' 
= +oo, over the entire heating region. 
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Tk is evidently the temperature at which the 
hydrodynamic and radiant fluxes are comparable. 
Since D does not depend strongly on 1'1 (for y 
= const, D "' T'(' ), temperature T k is practically 
independent of the strength of the wave, when the 

latter does not vary over too broad a range (for ex
ample, in air, Tk ""300,000°). 

At the same time, as follows from Eq. (16), Tk 
is extremely close to that temperature behind the 
front 1'1 , at which T_ is comparable with 1'1 • When 

'1'1 « Tk we get 'J'_ « 1'1 « T k and the solution 
(14), (15) is valid over the entire heating zone. 

Numerical integration of Eqs. (ll) and (12) shows 
that the approximate solution is quite accurate up 
to values of T_ extremely close to T k· This oc
curs because the accuracy is proportional to the 
third power of the ratio T _/Tk. Thus, for example, 
at T_ = Td2, the greatest error (in front of the dis
continuity) is 1.1%. 

Now we will find the solution of the equations 

behind the discontinuity. The curve U(S) has two 
branches, corresponding to the two branches of 
T(S). As was shown in Ref. 3, the point at which 
these branches intersect also determines the posi
tion of the discontinuity (the flux and density of ra
diation are, of course, continuous in the wave). 

In the limit of a weak wave, the compression and 
the temperature are constant behind the discontinu
ity. Assuming that the change of compression be
hind the discontinuity is small, we find, as before, 

the connection between the flux and the temperature 
from Eqs. (3) and (4) on the second branch, to 
within small quantities of the second order "-' 1]~: 

(T - T 1) Dp0R ( j + 1) (3 - 1) / ( j - 1) = S. (17) 

We will obtain an approximate solution of the equa
tions behind the discontinuity by assuming that the 
temperature in this region varies slowly, i.e., by re

placing Ueq by Ueq 1 = 4aT~/c in Eqs. (6) and (ll). 
To this approximation, the system of equations is 
easily solved, and yields* 

S-'--- c (Ueq 1- U) !V3 = S0 exp (V3 -c), -c<O, 
(18) 

T-T 1 = (T+-T1)exp(V3-c), -c<O, 
(19) 

*Exactly as in the region in front of the discontinuity, 
this solution is the limiting form of an integral curve, orig
inating at a singular point of the saddle-point type at T= 

where T+ is the temperature at the discontinuity on 
the upper side of the jump. 

We will obtain the values of U0 , SJ at the discon
tinuity by joining both branches of the U(S) curves, 
Eqs. (14) and (18) * 

(20) 

(21) 

We will find the values of the temperature on both 
sides of the jump from Eqs. (13) and (17). Taking 
(16) into account, we obtain 

As could be expected, the value of the peak tem
perature /'I.T + = T + - 1'1 falls rapidly as the strength 
of the wave is decreased. 

An estimate of the upper limit of the possible 
error in the approximate solution (18), (19) shows 
that just as in the heating zone, the accuracy of 
the approximation is good up to T 1, sufficiently 
close to Tk. Thus, for example, at 1'1 = Tk/2, the 
error in /'I.T + and 5° is less than 10%. 

Profiles of the dimensionless temperature 0, flux 
::S, and density j of the radiation are shown in Fig. 

l. The units of these quantities are T k• Sk 
Profiles of the dimensionless temperature 0, 

flux :£, and density j of the radiation are shown 
in Fig. l. The units of these quantities are Tk, 
Sk = 4aJk/y'3, and Uk= 4aTkfc, respectively. 

When the radiation is far from equilibrium U » Ueq• 
as occurs in the heating zone, the mean of the ab
sorption coefficient over the spectrum in the diffu

sion equations has a completely defined character. 
In this case, we may also easily integrate the spec
tral diffusion equations for the flux and density of 
the radiant energy of frequency v, per unit fre
quency interval, SvUv, which may be written in the 
same way as intergrals (6) and (7). Letting Uv 
>> Ueq• where 

(24) 

*Note that the value of U0 was obtained correctly, cor
responding to the limiting case T( T) = T1 at T < 0, and 
T = 0 at T > 0. 5° is too large by a factor of 2/-/3. This 
is a consequence of the diffusion approximation. 
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Sv = cUv fl/3 = se exp (-' V3"=v), "=v = ~ xvdx, 
0 (25) 

so that the law of averaging is the same in both 
equations. 

FIG. l. 

Integration over the spectrum of the spectral equa
tion corresponding to Eq. (6) shows that "v = lllv 
is averaged Bimply over the spectral density of ra
diation and tl:te mean coefficient tt corresponds to 
the frequencies which give the greatest contribution 
to the flux and energy density of the radiation. 

In the nonequilibrium zone we may obtain expres
sions for the flux and density, which in distinction 
to the diffusion approximation, take account rigor
ously of the angular distribution of the radiation. 
As is well known, 5 in the plane problem, S and lJ 
may be written in an integral form 

S == T ~ L{,qE~ (-:- -;:') cl-;:' 
-co 

co 

, _ __!_ \ U Eo(:'- 't) d-e', 
2 J eq -

(26) 

where the functions £ 1 and E2 are special cases of 
integral exponentials 

co 

En (z) = ~ e-xzx-"dx. 
1 

(28) 

Since the radiation generated in the heating zone 
contributes very little to the total flux and density, 
we may, in Eqs. (26) and (27), neglect integrals 

over sources located in this zone, i.e., integrals 

over -c from 0 to oo, Using the well known proper
ties of integral exponentials, we then obtain 

S = S02£3 (-r:), U = U 0E 2 (-r:), T = T_2E3 (-r:). 

(29) 

In the limit T+ - T1 « T1 and T( -c) = T1 for -c < 0, 
integrals (26) and (27) give, rigorously 

so= cU 0 /2 === crTi. 

3. APPROXIMATE SOLUTION OF THE 

EQUATIONS FOR THE CASES OF AN 
"ISOTHERMAL JUMP" T1 > Tk 

AND A THERMAL WAVE 

(30) 

At the lower edge of the heated zone of a strong 

shock wave with T1 > Tk, in the region where 
T < Tk, the radiation is not in equilibrium, as be

fore, and solutions of the type (14) and 05) are 
valid. When the temperature becomes of the order 
of T k, the density U approaches equilibrium; more
over, as the temperature increases, the relative de
viation of U from Ueq becomes less and less. This 

behavior is also indicated by the numerical integra
tion of Eqs. (11) and 02). In this region, so called 
local equilibrium U == Ueq occurs, which is the start
ing point of the radiant thermal conduction approxi

mation. In the local equilibrium approximation, Ueq 
may be substituted into Eq. (7) in place of U. Com
bining the equation thus obtained with Eq. (12), we 
obtain an equation of the first order for the tempera
ture, which is easily integrated. 

This solution for the equilibrium part of the heat
ing zone must be joined with the solution in the 
nonequilibrium part, Eqs. 04) and (15), at the point 

-c = -ck, with temperature Tk, which effectively de

limits both regions. 
Using Eq. (16), which determines Tk, we find, 

after an elementary calculation, the solution in the 

heating zone: 
in the nonequilibrium region 

T I Th = cUI 4crT1 = v3 s I 4crT'k 
(32) 

= exp{-V3(":--r:h)}, -;:>";" 
and in the equilibrium region 

-- = 1 - -,-- (-r: - 'th) ' ( cU )'/, [ 3 V:f ]'i, 
4crT'k '* 

0 < "; < 'tk, (33) 
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where "k is expressed in terms of the greatest 

heating temperature 

(34) 

Solution (33) is extremely close to the exact so

lution obtained by a numerical inteb>Tation of Eqs. 
(ll) and (12). Even at T = 1.5 T k the error is less 
than 13%. 

In the nonequilibrium region the more precise so
lution, Eqs. (29)- (31), is valid if in it we replace 

T by '" - Tk> and replace S 0, U0 , T _ by Sk, Uk, 
and Tk, respectively. In exactly the same way, the 

conclusions at the end of Sec. 2 regarding the law 

of averaging of the absorption coefficient are valid. 
As regards the equilibrium region, since local 

equilibrium occurs, the free path lv is averaged ac

Cording to Rosse land. 5 Here, the average free path 
l corresponds to high frequencies, lying in the Wien 

region (hv"' 6kT corresponds to lv "-' v3l). 
It was shown in Sec. 2 that as the amplitude of 

the wave increases, the temperature T_ in front of 
the jump becomes comparable with 1'1 , the tempera

ture behind the front, when the latter reaches Tk. 
With further increase of 1'1 , T _ cannot become 

greater than T because otherwise the radiation den

sity would decrease during the change behind the 

discontinuity from U_ "' 4aT~! c to Ueqt = 4a1'~/ c, 
the flux in this region would be directed toward the 

other side and density in the wave would not vary 

monotonically, which clearly does not make sense.* 

Therefore, in the case -of a sufficiently strong 
wave, where 1'_ > T k, the temperature T_ in front 

of the discontinuity reaches the magnitude of the 

temperature 1'1 behind the front, and with further in

crease of the amplitude of the wave, remains almost 

equal to it 

(35) 

Because of the existence of local equilibrium in 

front of the discontinuity, the radiation density be
hind the discontinuity is almost independent of the 

coordinate, i.e., the solution behind the discontinu-

from the conditions of intersection of both branches 

of the. C(S) curves. Using solutions (33) and (36), 
we find 

(37) 

The temperature behind the discontinuity may be 

found from the approximate formula (17), or directly 
from the exact equations (3) and (4). The latter 

give* 

(38) 

clad we also used the local equilibrium approxi

mation behind the discontinuity, or, equivalently, 

the radiant thermal conduction approximation, then 

since the radiation density is constant, we would 

have obtained a constant temperature. Then the 

temperature would not undergo a discontinuity in 
the wave. This case is called the "isothermal 

jump". 6 Actually, an "isothermal jump" is never 

realized, as was noted in He£. 3, because it contra

dicts the condition of continuity of flow. t 
It is easy to evaluate the accuracy of solution 

(36). Substituting it into Eq. (11) as a zeroth ap

proximation, and using Eq. (17) and the condition 

of flow boundedness which is a consequence of the 

hydrodynamic relations (3) and (4), we find after 

some straightforward calculations, 

(39) 

We see that the relative deviation from Ueqt of the 

radiation density behind the discontinuity decreases 
extremely rapidly as the amplitude of the wave in
creases. 

We may estimate the upper limit of the optical 

thickness of the layer, in which the flux increases 

from zero to the maximum S 0 and which at the same 
time is the thickness ~T of the temperature peak 

according to Eq. (7), in which as an approximation 

ity is 
*The approximate formula yields T + = 4T1 /(y + 1). 

(36) For y= 1.25, the error is 1.7%, which attests to the great 
accuracy of Eq. ( 17). 

The magnitude of the flux at the discontinuity is 

determined, in accordance with the general rule, 

*This simple physical result was obtained by Zel' do
vich3 from a purely mathematical analysis of the integral 
curves of the equations. 

t Indeed, in front of the discontinuity, at the point 
x = 0, S differs from zero and is proportional to T_ ac
cording to Eq. (13). But behin<). the discontinuity, in the 
local equilibrium approximation at the point x = 0, 

S ru dU!dx,dUeqldx ru dT/dx=O for T=const. 



1248 IU. P. RAIZER 

we replace (dl;/ d T: ) 0 , the derivative at the discon
tinuity, by {Ueqt- U")/6.rc. Using Eqs. (37) and 
(39), we find that the thickness of the peak de
creases rapidly with increasing amplitude of the 
wave, 

(40) 

Profiles of the nondimensional temperature, flux 
and density of radiation are shown in Fig. 2 for the 
case of an "isothermal jump". The realization of a 
strong "isother!fial jump" requires special and rather 
artificial conditions, for example, a piston, "push
ing" a strong shock wave ahead of it. 

fl 

(1, , ___ _ 
14 
\ 
\' 
\ 

FIG. 2. 

If we consider more real sources of such strong 
waves, such as a local discharge of very great en
ergy, the earlly stages of the propagation of this en

ergy from the source through the gas takes place 
not hydrodynamically, but by radiant heat conduc
tion, as was envisaged in Ref. (4). 

The radiant thermal conduction or thermal wave 
mode is essentially nonstationary. In Ref. 4, this 
mode was self-similar. However, the lowest edge 
of the wave is stationary in a system of coordinates 
moving with the velocity of a head wave. The thick
ness of the stationary layer is determined as fol
lows: during the time that the wave progresses 
through a distance of the order of this thickness, 
its velocity D remains practically constant. 

In the limiting case of a strong thermal wave, the 
role of hydrodynamics tends toward zero, and the 
wave propagates through a nonmoving gas. Under 
these conditions, the lower edge is described by the 
same equations, (3), (4), (6), and (7), as the heating 
zone in a strong shock wave. No conditions are im-

posed from above on the solution of the equations; 
it gradually transforms into the nonstationary solu
tion, encompassing the whole space occupied by the 

wave (for example, in the self-similar solution of 
Zel'dovich and Kompaneets 4). The solution of the 
equations clearly coincides with the solution in the 
heating zone, Eqs. (32) and (33), in which 'k sim
ply plays the role of a constant of integration. Since 
there is now no specially distinguished point in the 
wave (such as the point of discontinuity in the case 
of a shock wave), it is convenient to locate the co
ordinate origin 'T: "" 0 at the point delimiting the 
equilibrium and nonequilibrium regions, tyhere 1' 
""Tk. Then the solution at the lower stationary 
edge of the thermal wave is written in the form 

T V:fs 
Th 4aTj~ 

{
cUI 4aTt = exp (- V3't) 't > 0, 

- (cU 1 4aT,z)'1• = (l- 3ll3 "1 4)'1• "< o, 

(41) 

where as previously, Tk is determined by Eq. (16), 
in which D is understood to represent the velocity 
of the head of the wave. 
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