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A study is made of the energy dependence of the real and imaginary parts of the effec
tive potential of the optical model, with all states of the compound nucleus taken into ac
count. An interpretation is given of the broad resonances in the interaction of neutrons 
with nuclei. 

INTRODUCTION 

I N PAPERS of Brueckner, Watson, and their col

laborators 1 a basis has been given for the opti
cal model of the interaction of low-energy nucleons 
with nuclei, which had been introduced by Fesh
bach, Porter, and Weisskopf 2 to explain the scat

tering by nuclei of neutrons of energies up to 3 Mev. 
In the optical model the interaction of a nucleon 
with a nucleus, which involves the many-body prob
lem, is reduced to a consid~ration of the motion of 
the nucleon in a certain complex effective potential 
V(l + i(). Here the results of the interaction of 
the nucleon with the nucleus are separated into the 
elastic scattering (caused by the real part of the po
tential} and all other processes, which go through 
the stage of the compound nucleus (caused by the 
imaginary part of the potential}. The imaginary 
part of the optical potential is determined by the 
coupling between the one-nucleon excited states 
and the many-particle excitations of the compound 
nucleus. 

A study of the energy dependence of the real and 
imaginary parts of the effective potential is of great 
interest, especially in the range of energies corre

sponding to those at which isolated resonances are 
observed in the cross-sections. This problem has 
already been studied in a paper by Brueckner, Eden, 
and Francis. 3 In that paper, however, only the two
particle states of the compound system are consid
ered; it is shown that in the energy range corre
sponding to two-particle excitations of the com
pound system the real and imaginary parts of the 
effective potential undergo considerable changes. 

In the present paper an attempt is made to study 
the energy dependences of the real and imaginary 
parts of the effective potential with the inclusion 
of all states of the compound nucleus. Unlike what 
was found in Ref. 3, we do not get a rapid variation 
of the real part of the potential in the energy range 

corresponding to the isolated resonances in the re
action cross-sections. Even the imaginary part of 
the potential increases relatively smoothly with the 
energy outside the isolated resonances and in the 
region of overlapping levels. In the region of iso

lated resonances the imaginary part of the effective 
potential rises sharply. 

Ih order not to complicate the problem by inclu
sion of the Coulomb interaction, we consider only 
the interaction of a neutron with the nucleus. 

l. ENEHGY DEPENDENCE OF THE HEAL 

PART OF THE OPTICAL POTENTIAL 

According to the optical model 1 the real part of 
the effective interaction potential of a neutron and 
a nucleus is given by 

A 

V (r) = Re ~ (t")' (l.l) 
C<=l 

where <t::;.> denotes the average, over the wave 
function cp0 of the ground state of the target nucleus 
A, of the operator of the interaction of pairs, which 
is determined by the integral equation 

(1.2) 

where va. is the interaction of the incident nucleon 
with the o.th nucleon of the target nucleus; the op
erator D is given by 

D = E- HA- Kn + i'fj, (1.3) 

where E is the energy of the system, HA is the 
Hamiltonian operator of the nucleus A, Kn is the 
operator for the kinetic energy of the relative mo
tion of neutron and nucleus, and 17 is a small pos
itive number, which assures the presence of outgo
ing waves only in the scattering. After the inte-
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grations have been carried out one must let 7] go to 
zero. 

By direct substitution one can verify by the use 
of the operator identity 

that the operator equation (1.2) has the solution 

that the xf. form a complete normal orthogonal sys
tem of functions for the compound nucleus. Then 
we can write 

V/Doe = ~ R~ (s) XA, 
A 

(1.9) 

(1.4) Now we can write 

In the approximation of the optical model the 
wave function Xe of the incident neutron must sat
isfy the Schr"odinger equation 

[s- Kn + V (r)] X< (r) = 0, 

where 8 is the energy of the relative motion of neu
tron and nucleus. 

Let us determine the dependence of the mean 
value of the real part of the optical potential 

V =(X, (r), V (r) Xi(r)). (l.S) 

on the energy 8 of the relative motion. Substituting 
Eq. (1.1) into Eq. (1.5) and taking into account Eq. 
(1.4), we get 

A 

V = Re ~ {(<Do•• v"<D0,) 
"~1 

(1.6) 

where <l>0 E = cp0x/r). 
We are interested in the behavior of the expres

sion ( 1.6) in the energy range corresponding to the 
resonances in the cross-sections for nuclear reac

tions. We introduce the wave functions Xf. and en
ergies Ef. of the compound nucleus A + 1 by means 
of the Schrodinger equation 

(1.7) 
where 

A 

If = If A + Kn + ~ V, (1.8) 
"'=1 

is the Hamiltonian operator of the total system. 
With natural boundary conditions the solutions 

(1.7) for E1, > 0 correspond to disintegrating states. 
Because of the large lifetimes of the states of the 
compound nucleus in comparison with the lifetimes 
of single particle excitations, we shall make the 
approximation of assuming that the E1, are real and 

(D- v")-1 Va<Doe = ~ R~ (s) (D- v,:)-1XA.(l.10) 
A 

Introducing the matrix (-f+t-(8) by the equation 

(l.ll) 

we bring Eq. (1.10) into the form 

(D- v,:)-1 Vcx<DQE = ~ R~ (s) f~!J. (s) x!J.. (1.12) 
A,fJ. 

To determine the matrix (!;. ( 8) we apply to both 
sides of Eq. (l.ll) the ope~ator 

D-v"=:.E-H + ~ Vf' + hj; 
[3+a 

then, taking account of Eq. (1.7), we get 

XA = ~ f~l' (s) {E -- E[J. + i'l] + ~ vd xll" 
[J. [3+x 

* Multiplying this equation by Xf. and integrating 
• 1 

over all vanables of the compound nucleus, we get 
the equation 

~ f~!J. (e){(£- EA + i"fj) o[J.A, + Q;,.J = OAA,•(l.l3) 
[J. 

where 

Q~A ='= (xA, ~ Vf>X!J.)• ( 1.14) 

"''"' 
Assuming that the nondiagonalmatrix elements 

QAfk are smaller in absolute value than the diag
onal elements, we can solve Eq. (1.13) for [f. . 
Then, substituting E:q. (1.12) into Eq. (1.6) a~d 
taking into account Eq. (1.9), we get 
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From Eq. (1.14) we see that Q~A is the average en
ergy of interaction of one nucleon with A - 1 nu
cleons in the compound nucleus in the state x~.. 
Consequently, Q~/.. < 0 and its absolute value is 
some tens of millions of electron volts. Thus it 
follows from Eq. (1.15) that for energies of relative 
motion 8 < 30 Mev the real part of the potential 
(1.15) varies smoothly with the energy. At ener
gies of the relative motion greater than 30 Mev the 
excitation energy of the compound nucleus falls in 
the region of the continuous spectrum, and the im
aginary part of the optical potential becomes so ap
preciable that the concept of single-particle states 
becomes less justified. 

2. THE IMAGINARY PART OF THE 

EFFECTIVE INTERACTION POTENTIAL 

BETWEEN NEUTRON AND NUCLEUS 

The imaginary part ( ~V) of the potential in the 
optical model of nuclear interactions describes all 
processes that go through the stage of the com
pound nucleus. In obtaining Eq. (1.1) we took into 
account only the coherent scattering of the neutrons 
inside the nuclear matter. Therefore the imaginary 
part Im :r <ta.> gives only the decay of the state 

(). 

<l>0 E: owing to the presence of outgoing waves. A 
special argument is required for the calculation of 
the imaginary part of the potential caused by tran
sitions into states of the compound nucleus with 
the same energy. 

If the probability per unit time for a transition 
from a single-particle excitation <PoE: into excita
tations of the compound nucleus is denoted by r, 
then the imaginary part ~V of the potential for the 
optical model is given in terms of r by the relation 

(2.1) 

The system consisting of the nucleus A and the 
neutron is described in the optical model by the 
Hamiltonian 

(2.2) 

where !JA is the Hamiltonian of the target nucleus, 
Kn is the operator for the kinetic energy of the rei-

ative motion of nucleus and neutron, and V(r) is 

given by Eq. (1.1). Let us denote by EnE and <llnE 

respectively the eigenvalues and eigenfunctions of 
this operator. Here EnE =En + E, and 

<Dne = CfnX•• H At'n = En'fn• 

[Kn + V (r)] Xe = 8X•· 
Using Eq. (2.2), we can write the complete Ham

iltonian of the system, Eq. (1.8), in the form 

H=H0 +H', (2.3) 

H' =] {v'"- Re (t,)}. 
(2.4) 

The operator (2.4), which represents the differ

ence between the complete Hamiltonian and the 
Hamiltonian of the optical model, is the cause of 
the formation of the compound nucleus, in which 
the excitation energy is distributed over a large 
number of degrees of freedom. 

In order to calculate the transition probability 1' 
we shall look for a solution of the time-dependent 
Schrodinger equation 

i!ifJo/jfJt = (H0 + H') '¥ (2.5) 

in the form 

o/ =a (t) <D0• exp { -iE~.tjli} 

+ ]' bn~ (t) <Dnr; exp {-iE~~tjli} (2.6) 
n,l; 

with the initial conditions 

a (0) = 1, bndO) = 0, (2.7) 

and where 

(2.8) E~r, = EnE, + (<Dnr;, H'<DnrJ· 

Substituting Eq. (2.6) into Eq. (2.5), we get (for 
t < 1'-1 ) the system of equations 

ilidajdt 

= ]' (<1)0., H'<Dnd bnc, exp {i (£~.- E~E,) tjh}, 
n~ 

i"ttdbnddt (2.9) 

=a (<Dnr;, H'<I>0.) exp {i (E~r;- E~.) tj'k} + 
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We solve the system (2.9) with the initial condi

tions (2. 7) by the substitution 

a (t) = exp {-rt/2}. 

Then in the usual way we get 

bn~ = (<Dn~,H'<Doe) 

exp { -i (E~e- E~~- iftL/2) tjft} - 1 
X -----.:::--__:_:_:'---------

E~e- E~~ -Wii(2 

r = ~ ~I I (<Doe• H'<Dn~) !2 

n!; 

1 - exp {i (E~. - E~~ - iftL/2) t(ft} 

X E~e- E~~- ifii/2 

(2.10) 

Introducing the number of states w (E)dE in the 
energy interval dE, we can go in Eq. (2.10) from 

the sum to an integral; then 

(2.11) 

where En 0 g0 "'Eof.. 
To find the energy dependence off' in the region 

of the resonances of the compound nucleus, we ex
pand the function <Pof. in terms of the complete set 
of the functions X;\ of the operator (2.3), 

(2.12) 

It is easy to verify that the expansion coefficients 

are given by the formula 

(2.13) 

From the normalization of the functions XA and <Pn g 

we have the equations 

~ AA,n~ A~',n~ = On'; ~ AA,n~AA,n'~' = Onn'O~~'· 
n,~ A 

(2.14) 

Substituting Eq. (2.12) into Eq. (2.11) and using 
Eq. (2.13), we get 

r- 2rrl ~ - r L.J 
A • 

(<DOE' H'XA)(XA' H'<Dn,F) 

EA- Eoe 
r w (En,~,). 

(2.15) 

In the region of overlapping resonances the sum 
over A can be replaced by an integral; then 

(2.16) 

If, on the other hand, the energy Eof. falls in the re
gion of isolated resonances, for example Eo!"' Ef.., 
then in the sum over A in Eq. (2.15) only one term 
will be important; consequently, 

(<Doe• H'XA) (XI.' H'<Dn,~) 

EA- Eoe 
1
2 w (En,~,) + r o· 

(2.17) 

where 1 0 is the part of 1 that is weakly energy de
pendent. 

To calculate 1' from Eqs. (2.15) and (2.17) one 
must know the wave functions XA and <Pnt and the 
energy dependence of the density of states w(E). 

Under certain simplifying assumptions, an esti
mate of the quantity I" is made in the following sec
tion. Here we only remark that the expressions 
(2.16) and (2.17) make it possible to draw qualita
tive conclusions about the energy dependence of I'. 
Namely, in the region of isolated resonances of the 
compound nucleus the energy dependence of 1 is of 
a resonance character. Outside the isolated reso
nances and in the region of overlapping resonances 
the quantity 1 increases with the energy, mainly 
owing to the change of the density of states w(E). 

It must be noted, however, that our arguments are 
valid only for not too high excitation energies (~;; 

<50 Mev). 

3. INTERPRETATION OF THE BROAD 

RESONANCES IN THE INTERACTION OF 
NEUTRONS WITH NUCLEI 

The quantity1ir defined by Eq. (2.15) character
izes the width of the single-particle levels of the 
nucleus. Therefore 1il' is to be compared with the 
experimentally observed widths (rv 2 Mev) of the 
broad maxima of the scattering cross-sections of 
low-energy (rv 5 Mev) neutrons averaged over the 

resonances. 
For an estimate of the quantity 1 in the region of 

closely spaced resonances, using Eq. (2.13) we put 

Eq. (2.15) in the following form: 
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I "' 12 Jir = 2r:cu (En,d .L.J At.,oeAA,n,;, (EA- En,;,) . 
A 

Now, neglecting off-diagonal terms of alternating 
sign, we get 

"lir ·~ 2;:cu (En,:,,) ~ [ A).,Oe 12 I AA,n,;, 12 (EA- En,;J3. 
A 

Introducing the density of states w(E1) of the com

pound nucleus, we can replace the summation over 
A by an integral over the energy. Then 

(3.1) 

X ~I AA,Oz [2 [ At.,n,;, [2 (£A- En,;Y W (£~.)dE)... 

In this same approximation the orthogonality condi
tion (2.14) is written in the form 

• 
To estimate the value of l' we assume that the 

energy dependence of I A;., OE [2 udE;_) can be repre
sented by the expression 

where B is determined from the condition (3.2). 
Then 

B == 2r:-'1. [l + <D (x)P, 

X 

<D (x) = V~ ~ e-t' dt, X-- £ 0./D.oe· 
0 

(3.4) 

(3.5) 

The quantity Q0E is expressed in terms of the 
value of the "second moment" IP introduced in the 
paper of Lane, Thomas, and \Vigner4 

\\72 == ~ (E A- Eoe) 2 1 Ai.,Oe [2 • 

A 

(3.6) 

Going from sum to integral and inserting (3.3), we 
get 

W2_ . __ 
1~fl +""( )-~ -x'} -2[1--t-<D_(x)]l w X y·;te · (3.7) 

From Eq. (3.7) it follows that for x < 1 and for x > l 

(3.8) 

On the other hand, substituting Eq. (2.13) into 
Eq. (3.6), we have 

W 2 = ~I (CDoe. fl' x~.) 12 = (<Due• (H') 2 cDoJ, (3.9) 
). 

where, according to Eqs. (2.4) and (1.4), the opera
tor 11' is given by 

(3.10) 

Substituting Eq. (3.3) into Eq. (3.1) and using 

the equations E 0E "'Eno~o' i'i20 E "'Qno~o' we can 
write 

Equation (3.11) gives the width of a "giant" res
onance in the neutron scattering cross-section (in 
the region of overlapping levels of the compound 

nucleus) and its dependence on the energy. To es
timate the value of 7if' and its dependence on the 
energy EoE it is necessary to know the energy de
pendence of the density of states w(E). According 
to the statistical model of the nucleus 

w(E) =cexp(Vb£), (3.12) 

where the parameters c and b are functions of the 
mass number A. According to He£. 5, satisfactory 
agreement with experimental values of the density 

of levels is obtained with the choice b = 0.14(A - 12) 
for nuclei with mass numbers in the range 15 <A < 70. 

Equation (3.12) is inconvenient for analytical 
calculation, and therefore we set 

(•) (E) = a exp {~£} (3.13) 

and choose the coefficient p in such a way that in 
the range 7 < E < 30 Mev, which is most important 
in the integral (3.11), Eq. (3.13) gives about the 
same increase of the levels as does Eq. (3.12). 
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For nuclei with mass numbers close to 60 we can 
take (:3 = 0.3. It must, of course, be kept in mind 
that in the interaction of neutrons of energy less 
than 3 Mev with nuclei only those states of the com
pound nucleus are excited that have spins differing 
from that of the original nucleus by ± X. Equation 
(3.12) refers to all possible levels of the compound 
nucleus. Therefore the energy dependence of the 
density of levels with a definite spin value must be 
given by a value of 1'3 less than 0.3. 

Substituting Eq. (3.13) into Eq. (3.11), we find 
after simple calculations 

2V2noe C 2 d n.r = li+ <D(x)J2 ) y exp {- y (y + 2a)} y, 
-xV2 

(3.14) 

For {:3 = 0 and, consequently, for a = 0, using Eq. 
(3.8) and x < 1, we have 

This value agrees with that obtained in the paper 
of Lane, Thomas, and Wigner on the basis of the 
assumption that 7ir = W 010 , which leads as follows 
from their calculation, to the excessive value 7ir' 
= U: oE = 23 Mev. It must, however, be noted that in 
the calculation of W010 in Ref. 4 account was taken 
only of the terms 

in the operator 11' of Eq. (3.10). 
If we adopt for If 010 the value 23 Mev obtained in 

Ref. 4, then according to Eq. (3.8) noE "'32 Mev. 
E . 

When the inequality x = ~< 1 is satisfied, it fol-
32 

lows from Eq. (3.14) that 

"" 
hf ~ 2V2n0• ~ y2 exp {- y (y + 2a)} dy. (3.15) 

0 

It follows from Eq. (3.15) that the value 7il' = 2.5 
Mev is obtained, if we set {:3 = 0.13. But if nOE 

= 20 Mev, we must take (:3 = 0. 2. 
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