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The wavelength dependence of the coefficient of reflection from the 1340 planes of 
quartz crystal bent to a cylinder having a 2 meter radius was investigated on a two-meter 
crystal gamma-spectrometer. The quadratic character of this dependence was substan
tiated. It was shown that in theoretical examinations of this effect it is essential to take 
into account distortion of the reflecting planes. In the treatment, the plate is subdivided 
in thickness into a series of independently reflecting laminae, the thickness of which is 
less than the primary extinction distance. The crystal plate is found to behave as a mo
saic crystal with small primary extinction. Thus the hitherto inexplicable quadratic de
pendence of the reflection coefficient on the wavelength finds a natural explanation, 

IN INVESTIGATING the:_ coherent reflection of x-
and y-rays from the 1340 planes of quartz plates 

cut from an a-quartz single crystal so that the 1340 
planes were normal to the plane of the plate and 
the side edges were parallel to the optical axis of 
the crystal, Lind, West and DuMond1 found that the 
dependence of the integrated reflection coefficient 
on the wavelength for plates elastically bent to a 
cylinder of 2 meters radius is close to quadratic. 
Their measurements of the integrated reflection 
coefficient for the same plate in the unstressed 
state led to a dependence close to the linear, i.e., 
the dependence characteristic of ideal crystals. 
Lind et al. do not attempt to give an explanation 
of the observed effect noting only that " ... the 
quartz might, however, become mosaic-like in struc
ture in some elastically reversible way not now un
derstood." 

We felt it would be of interest to verify the quad

ratic dependence of the reflection coefficient on the 
wavelength discovered by Lind, West and DuMond 

and to find an explanation of the effect. The meas
urements were carried out on the two-meter crystal
diffraction spectrometer of the All-Union Scientific 
Research Institute of Metrology. 2 We investigated 
the reflection from th!! 1340 planes of a 
50 x 30 x 1.6 mm plate of a-quartz cut and bent 
just as in the measurements of Lind, West and 
DuMond. We determined the ratio of the area under 
the spectral line to the number of pulses from the 
direct beam, due to photons of the same energy. 
This ratio f'i, as can readily be shown, is propor
tional to the integrated reflection coefficient. 
Figure 1 (curve a) shows the results of measure
ments at energies of 191 kev (ln114), 279 kev (Hg203 ), 

412 kev (Au198 ) and 1190 kev (mean energy of the 

group of hard lines in the spectrum of Ta182). It will 

be seen that a dependence of the form 
log 1; = c - n log E obtains. Processing of the data 
by the method of least squares yields n = 1.85 ± 0.05, 
where 0.05 is the mean square error. Analogous 
measurements with reflection from the ll24 planes 

of a-quartz (the 50 x 30 x 0.8 mm plate was cut so 
that the plane of the plate was perpendicular to the 
1124 planes) also led to a dependence very close to 
the quadratic (Fig. 1, curve b). 

log(~ ttl} 

1,0 

ao 

z.o 2.Z log (E, kev) 

Lind, West and DuMond assumed that the initially 
flat reflecting planes remain plane when the plate 
is bent. This in general is not correct. ActualLy 
when a plate of arbitrary cross section is bent by 
the application of a bending moment M1 acting in 
the yoz plane (Fig. 2) the displacements in the 
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FIG. 2. 

direction of the z-axis in the case of anisotropy of 
the general form are determined by the familiar 
relation 3 

W = ( M 1 I 2/1)[ a3sXY + a34Y2 + a33Y (2z - l)], 
(1) 

where M1 is the effective bending moment, 11 is the 
moment of inertia about the x-axis and the ai/s are 
strain coefficients. If a34 and a 35 differ from zero, 
the cross sections are distorted by the bending into 
second-degree surfaces. With a 35 = 0 the planes 
bend along the parabolas: 

z = k1y2 , k1 = M1a341211. 

If a35 -f. 0, Eq. (l) becomes invalid for cases of 
bending of the crystal plate between cylindrical mir
rors or by application of moments by the method of 
Borovskii-Gil'varg. 4 •5 Actually if a35 ,f:. 0, in addi
tion to bending, the plate tends to twist. However, 
the design of the crystal holder prevents twisting 
with the result that in addition to the moment M1 

(couple P P in Fig. 2) the plate is subjected to a 
moment Mt opposing the torsion (forces PP' in 
Fig. 2). The deformation of a plate loaded in this 
manner is satisfactorily approximated by the fol
lowing expression 

W ass 
= 2p [a33- a~s I (a44bz I az +ass)] (a44b2 I az +ass) 

(2) 

which is rigorously valid for a plate of elliptic 
cross section (in which case a and b are the axes 
of the ellipse) bent to a cylinder of radius p. Neg
lecting the terms with b2 / a2 (in our case (b/ a)2 

"' 2.5 x 10-3), we obtain 

(3) 

The coefficients in Eq. (3) must be expressed 

through constants in crystallographic coordinates. 
Then, for an o:-quartz plate with working planes 
hk 0, Eq. (3) assumes the form 

W= 

where cp is the angle between the y-cut and principal 
(50 x 30) faces of the utilized plate. For plates cut 
as in our case (1340 working planes), cp = 16°10' 
and Eq. (4) yields 

with a11 = 12.73 x 10-7 ; a14 = - 4.23 x 10-7 ; 

a44 = 19.66 x 10-7 cm2 /kg (Ref. 3); p = 200 em. 
Thus, in this case, too, the reflecting planes 

proved to be bent and if we neglect displacements 
in the direction of the x- and y-axes the bent sur
face will be described by an equation of the form 

The width of the diffraction peak is related to the 
number N of planes participating in the reflection by 
the familiar expression 

~&=tan &/rrN, (5) 

where & is the Bragg angle. The angle of the para
bolic surface relative to the plane cross section 
abed (Fig. 2) is ~&' "'tan ~&' = 2k2 y. Congruous 
reflection can occur from planes for which ~&' at 
the. point of incidence does not exceed~&. From 
the condition ~-It = ~-It', and bearing in mind that 

N = (y/d) tan a, 

where d is the interplanar distance between the re
flecting planes, we obtain the following expression 
for the number of congruently reflecting planes: 

N =tan & I Y2rrk2d. 

The thickness of the simultaneously reflecting 
lamina is given by 

(6) 

~y = v'd/2rrk2 • (7) 

Thus the plate is subvided in thickness into a 
series of independently reflecting laminae of thick-
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ness ~y. Let us assume that ~y « tx, where tx is 
the attenuation distance defined by the relation 

(8) 

where r 0 '= e2 /mc 2 , pis the polarization factor, F is 
the structure factor and v is the volume of the unit 

cell. 
The intensity of reflection from the entire lamina 

will be proportional to 

[r0p (F j vp~y /cos fJJ2. (9) 

The width of the diffraction peak will obviously be 

(10) 

where T is the thickness of the plate and the inte
grated reflection coefficient 

R& ~ 2k.,T r0p -- -- ~ -- r0 --- dTI,". [ ( F ) tJ.y ]2 pz 2 ( F )2 , ., 
" v cos & cos2 & v 

(ll) 

This relation is identical with the expression for 
the integrated reflection coefficient for a mosaic 
crystal. Computing ~y from (7) with k2'=0.226 X 10-3 

cm-1 and d '= 1.17 X l0-8 em, and tx from (8) for 
F (1340)- '= 21.0, v '= 112 A3 (Ref. 1), Amax '= 2d 
sin fJ '= 0.1 A, we obtain ~ y '= 2.87 X 10-3 em and 
lx '= 2.3 X l0-2 em, i.e., we see that ~y is really ap
preciably smaller than tx [Eq. (9) and the following 

are valid only under this condition]. From Eq. (lO) 
with T '= 0.16 mm we then obtain for the width of 
diffraction peak 

LlfJ~ '= 7. 2 X lO-s radians. 

An examination analogous to that above shows that 
for a plate cut with the 1124 planes perpendicular 
to the large faces the dependence of R& on the wave
length must also be quadratic. 

Thus we see that the quadratic dependence of the 
reflection coefficient of an elastically bent quartz 
plate on the wavelength can be explained naturally 
without recourse to any additional hypotheses. 
The bent plate actually does become similar to a 
mosaic crystal in consequence of bending of the re
flecting planes. 
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Translated by E. J. Rosen 
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up the crystals as infinitely long unidimensional or 
two-dimensional atom complexes, bound together 
by "small" forces of one nature, whereas in the 
complex itself the atoms are bound by "big" forces 
of another nature. 

6. The difference between the typical molecular 
crystals (e.g., the CH4 or C6H6 crystals) and the 
heteropolar molecular crystals (such as the NaCl, 
HgCl2 or PbS crystals) lies: (1) in the degree of 
molecularity {3; (2) in the nature of the forces in 
the molecules; (3) in the nature of intermolecular 

forces. The quantity {3 is defined as the ratio of 
the intramolecular energy ua ~ D ( D is the en
ergy of dissociation of the diatomic molecule into 
ions) to the intermolecular energy ue per bond. 
For the substances for which {3 is given below, it 
is possible to take ue ~ 2S/l. Example: 
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{3 = 300 ( CH4 ), 200 ( HCl), 22 ( HgCl2 ), 10 ( NaCl) 
taking l = 12 in all four cases. 

Translated by I. Polidi 
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Reads 

!:l.y = 2.87 x 10-3 em 

!::J.J. ~ = 7.2 x 10-5 radians 

2-(d, 3n); and of the I~7 cross 
section, 3-(d, 2n); 4-(d, 3n) 

p, yp, h, 1/p 

For y = 5/3, /J. has • o o 

Should Read 

W = y2 a~4 sin 2q>/2p (a11 a 44 

- a}4 sin2 3q>) 

The coefficient k:! equals 
Oo 185 x 10-3 em -i 0 

!:l.y = 3.18 x 10-3 em 

!::J.J.~ = 5.9 x 10-5 radians 

2-(d, 3n) on I~ 7 and 3-(d, 3n); 
4-(d, 3n) on Bi~g9 

PY2• 'YPY2• hy2, Y2/p 

Here /J. has o o o 
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Delete "Joint Institute for Nuclear Research" 

Add: Note. Columns 2-9 give the number of 
counts per 106 monitor counts 

1, 2, 3, 4-7. 8 

•• o (1 ± 1J./2M)2 

a 33 = 0.235 

mB/MB = • o o ":F [ 1 + o o o ] 

••• Elastically Conducting 

1, 2, 3, 4, 8-7 

• o • (1 + 1J./2M)2 

a33 = Oo235 

mB/MB = ":F [ 1 + o • o ] 

••• Electrically Conducting 




