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ment of extensive air showers 6 • 7. 

The lateral distribution of electrons in extensive 
air showers produced by primaries with the energy 
of ( 1-2) X 10 15 ev does not conform with the func

tions calculated by Nishimura and Kamata for the 
distribution of electrons in the electron-photon 
cascade for any value of the parameter s, including 
s"" 1.2. 
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F OR THE PURPOSE OF evaluating the matrix 
elements for various interactions between mat

ter and a radiation field it is necessary to have 
good nonrelativistic wave functions of the radiat
ing electron. Hydrogen-like functions or Slater 
functions are ordinarily used in calculations. How
ever, the results obtained by using these functions 
are not accurate because they do not take into ac
count the influence of all other electrons of an 
atom on the radiating electron, or do so insuffi
ciently. 

We have constructed approximate wave functions 

for an electron in hound states which allow for the 
electrostatic screening effect of the atomic elec
trons on the radiating electron. The calculations 
were based on a combination of the Fermi-Thomas 
statistical method of obtaining the effective elec

trostatic field which acts on an individual electron 
in an atom with a generalized quasiclassical meth
od of calculating wave functions in a given poten
tial field. 

The effective electrostatic field acting on a rad
iating electron in a heavy atom can he described 
by the Thomas-Fermi potential corrected at small 
and large distances from the nucleus, as follows: 

{
-Z(i-ar)jr, r~'l!Z; 

1 (Z -1) r r ) . u (r) = - r- -,- Cflo (,IL , 1 I z ~ r ~ ro, {l) 

l-1/r: r~r0 , 
where r0 is the boundary radius of a (Z - l)-fold 
ionized atom in the Thomas-Fermi statistical model 
and the constant a. is determined from the c·ontinuity 
of the potential at r "" l/Z [all quantities in Eq. (l) 
are measured in atomic units]. 

Since U(r) is a centrally symmetrical field the an

gular dependence of the eigenfunctions 1/J is ex
actly the same as in the case of the hydrogen atom. 

The problem is therefore reduced to the calculation 
of the radial functions Rnz(r) from the equation 

d2xnl (r) 1 dr2 + {2 [e:nl - U (r)]-l (l + 1) I r 2 } xnz (r) = 0, 

Xnz (r) = r R nl (r), (2) 

where U(r) is taken from (l). 
The solutions of (2) are obtained quasiclassi

cally in the generalized form first indicated by Fock 
and by Petrashen' 1 and later by other authors 2 • 

Using the Fock-Petrashen' method the desired so
lutions of (2) can he represented approximately as 

xnl (r) =A (S1 )-'l•cp [S (r)], (3) 

where cp(S) is the solution of the radial Schroedin

ger equation with a Coulomb potential: 

rn(S) = SRhydr (S) 
T nl ' 

and S = S(r), which we shall call the screening 
function, is determined from the equation 

r \ v 1(1+1) .) 2 [e:nz - U (r)]-~ dr 

r, 

s \' / zz 2Z I (I+ 1) , Jt - -112-+ 3-~ ds. 
s, 

(4) 



1022 LETTERS TO THE EDITOR 

The approximate energy eigenvalues Enl are ob
tained from 

r, 

~ {2le:n1-U(r)]-l(lrt 1) dr=rt[n-Vl(l+1)]. 

r, 

(for states with l f. 0) and 

r, 

~ v- 2 le:no- u (r)] dr = nrt 
0 

(for s states), where r1, r2 and 51 , 52 are the roots 
of the integrands. 

Energy values have been calculated for Ag and 
In atoms in ls, 2s, 2p, 3s, 3p, 3d and 4p states and 
Gd in 3p, 3d, 4p and 4d states. These energies 
(in Rydbergs) ar~ given in Table l. 

TABLE l. 

Ag 1791.2 260,5 241.7 
In 1956.4 289.9 268.4 
Gd - -- -

Our calculated energy levels are in quite satis
factory agreement with experiment 3; the discrepan
cies do not exceed 6 to 7% except for the outermost 
electronic shells. For such shells the statistical 
method of describing the electrostatic field is no 
longer valid. 

The single-electron wave functions obtained by 
the Fock-Petrashen' method are continuous over 
the entire field under consideration, so that they 
can be used for calculation of the matrix elements. 
But the screening function S(r), as seen from Eq. 
(4), cannot be represented in exact analytic form; 
therefore the matrix elements based on the approx
imate single-electron functions (3) can only be c,al
culated numerically. In order to avoid numerical 
integration and represent the approximate radial 
functions (3) in analytic form the screening function 
must be suitably approximated. Numerical calcula
tions of the screening functions for several of the 
above states showed that they can be approximately 
represented by logarithmic functions of the form 
a ln ( l + br), where a and b are such that 

50.0 42,6 29.4 5.9 -
57.2 48,7 34.6 7.2 -
- 108.6 87.1 20.4 12.2 

The screening function is very well approximated 
by S(r) = aln (l + br) in the spatial region which is 
most important for calculation of the matrix ele~ 
ments. This approximation of the screening func
tions also permits a relatively easy calculation of 
the normalization constants A in the approximate 
wave functions (3). 

The approximate radial functions (3) are finally 
of the form (the 3p state of indium being used as an 
example): 

R _ 1,887·103 r[1 (0,789 )]2 
31 - , 1 n --- r + 1 

a I• l , ao 
0 

( 0 789 )17,76} [ (0 789 )] r ~r+1 1-9,13ln\~r+1 . 

Our approximate radial functions (3) have been 
used to calculate the relative intensities of the 
K-series lines of silver and indium X-ray spectra. 
The intensities are listed in Table 2 (with the in
tensity of KG.t taken as 100) and compared with the 
available experimental values 4 •5 • 

TABLE 2. 

Ag In 
-

Calculated! 

Experimen· Experimen-
Transition Line tal values Calculated tal values 

intensity I intensity 
M 4 I W'll' s Meyer 4 Williams5 eyer J 1 tams 

K-+L 11 Ka, 50 51.7 49.9 50 51.8 49.9 
K-+Lm Ka, 100 100 100 100 100 100 

K-+MII+III Kf3,+f3, 27,2 24 29 24.7 21.7 29.6 
K-+Nil+Ill K[3. 5.14 4.22 6.17 4.48 3.65 6.47 

I 
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A comparison of our results with the theoretical 
calculations of others who used hydrogen-like wave 
functions shows that our quasiclassical radial func· 
tions give much better agreement with experiment. 

lines as calculated by the use of hydrogen-like 
func.tions are 50: 100: 34: 12 for all atoms, which 
does not agree with experiment. 

In conclusion I must express my gratitude to B. 
T. Geilikman, who directed this work. 
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JN CONNECTION with the anomaly in the mag-
netic properties of manganese carbonate below 

31° K, discovered by the authors\ it was deemed 
of interest to study the magnetic properties of ox
ides of manganese at low temperatures. These were 
the most probable impurities in the preparations 
studied. The magnetic properties of manganese 
monoxide (MnO) and of manganese dioxide (Mn02 ) 

have been studied in detail by a number of authors 2• 

Both compounds become antiferromagnetic at tem
peratures 122° K (MnO) and 84°K (Mn02 ). 

Measurements of the magnetic susceptibility of 
Mn203 and :\1n30 4 were carried out on natural sam
ples of these compounds in the temperature range 
20 to 300° K. The measurements were made on the 
same samples of hausmannite (Mn30 4 ) and of braun-

ite (\1n20 3) for which a physico-chemical analysis 
had earlier been made by Rode 3 • In Rode's judg
ment, the composition of these samples was quite 
close to stoichiometric. 

The results of the measurements of the magnetic 
susceptibility of hausmannite (\1n30 4 ), in the tem
perature range 43 to 300° K, are presented in Fig. 1 
as a plot of l/x vs. T (curve 1). Below 42.5° K, 
hausmannite exhibits characteristic ferromagnetic 
properties. In Fig. 2 is drawn a curve showing the 
dependence of the magnetic moment M on the field 
fl for 20.4° K. Hausmannite has the structure of a 
spinel elongated in the [00 1] direction 4 • Therefore 

it is natural to suppose that hausmannite, like the 
ferrites, is antiferromagnetic with an uncompensated 
moment. The ordering temperature is Tc = 42.5° K. 

The temperature dependence of the inverse mag
netic susceptibility in the paramagnetic range 
agrees qualitatively with the formula proposed by 
N eel 5 for such substances, 

T 1 s 
1/x=--+-----

cmol Xo (T-8)' 
(l) 

Curve 2 of Fig. 1 corresponds to formula (1) with 
the following values of the constants: 

Cmol = C (Mn++) + 2C (Mn+++) = 10,4; 

1 I Xo = 91,3; s = 3480, e = 31,1. 
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FIG. l. Temperature dependence of the inverse mag
netic susceptibility (molar) of hausmannite (Mn30 4). 

1-experimental curve; 2-Neel's formula; 3-Cude's Jaw. 


