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It follows from ( 4 7) and (54) that in tangential dis­

continuities of the type considered the absolute 
values of the velocity and magnitude of the mag­
netic field do not change on the discontinuity. All 

that occurs on the discontinuity is the rotation of 
those vectors, without a change in their length. We 
choose axis 2 in such a manner that the component 
fl2 is not changed by rotation of the vector H't. Then 

vl 
{H2 1 = 0 and {v2 l = 0, {v3 l =- lH3 l. It can be seen 

Hl 

from the figure that thereby the components v3 and 
!13 on the discontinuity change their sign. From the 
expression for E1 = -v/13 + v3H2 it follows that as 
a result E1 also changes its sign on the discontinu­
ity. 
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The phenomena of diffusion and thermal conductivity are investigated for dilute solutions o.f 
He3 in helium II, on the basis of the theory of superfluidity proposed by Landau for helium II. 
A solution is found for the system of kinetic equations for the elementary excitations in the 
case of non-zero temperature and concentration gradients within the solution. The temperature 
dependence of the effective thermal-conductivity for the solution is determined. A comparison 
with experiment is made. 

l. INTRODUCTION 

T HE PROBLEM of the kinetic coefficients for 
solutions of foreign particles in helium II has 

been investigated by one of the authors 1. From 
phenomenological considerations it was demon­
strated that in addition to the single coefficient of 
first viscosity Tf, the three coefficients of second 
viscosity, ( 1 , ( 2 , ( 30 and the coefficient of thermal 
conductivity x existing in pure helium 11 2 two fur­
ther kinetic coefficients appear in the case of solu­
tions: the diffusion coefficient D and the thermal 

diffusion coefficient DkT, where kT is the thermal 
diffusion ratio. The diffusion of an admixture of 

the isotope He3 has been investigated experimen­
tally by Beenakker, et al 3 , who determined the 
temperature dependence of the diffusion coefficient 
in the temperature range from 1.2° K to the A-point 
for a concentration c ""' 10"". In the present paper 
we consider the phenomena of diffusion, thermal dif­
fusion, and thermal conductivity for dilute solutions 
of He3 in helium II. 

According to Landau's theory 4 , liquid helium in 
the temperature region below the A-point (helium II) 
is to be regarded as a weakly-excited quantum sys­
tem. This implies that thermal energy of helium II 
may be represented as a gas of elementary excita-
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tions-phonons and rotons 5 • The phonon energy 8P 

is a linear function of the momentum 

(1.1) 

where s is the velocity of sound in helium II. 
The roton energy 8r depends upon the momentum 

p in the following way 

(1.2) 

where &., p0 , and flr are parameters of the theory; 
flr represents the effective mass of the roton. From 
the most recent data 6 

L'1./k=8,9°K, p0 fti= 1,95·108 

flr = 1 '7 • IQ-24 g. 

-1 em , 

(1.3) 

As has been shown by Landau and Pomeranchuk 7 , 

all foreign particles (including He3 atoms) dis­
solved in helium II combine with the normal compo­
nent of the helium II, and do not participate in the 
superfluid motion. 

From the experiments of Lynton and Fairbank 8 , 

who determined the velocity of second sound in 
mixtures of He3 in helium II, it may be concluded9 

that the excitations associated with the He3 atoms 
in helium II have the following spectrum: 

(1.4) 

where f1 = 8.5 m1 (m1 is the proton mass). 
In order to find the dependence of the kinetic co­

efficients for a solution upon temperature and con­
centration it is essential to determine the distribu­
tion function describing the behavior of gases of 
elementary excitations when non-zero gradients of 
temperature T, concentration c, and velocity Vn 

are present within the system. The distribution 
functions are determined by solution of a kinetic 
equation which we shall now derive. 

2. THE KINETIC EQUATION 

Non-zero temperature and concentration gradients 
within the solution give rise to motion of the normal 
and superfluid components of the helium II, leading 
to the appearance of additional terms on the left­
hand side of the kinetic equation. We shall derive 
these additional terms by means of the method em­
ployed in Ref. 2. 

The kinetic equation determining the distribution 
function n for the elementary excitations in a solu­
tion of He3 in helium II has the form 

-~'!_ + aH .!?!!__- aH fJ'!_ = I (n) (2.1) at op or or op , 
where n = n(r, p, t) is the distribution function, r 
and p are the radius and momentum for the excita­
tion, 11 is the Hamiltonian for the excitation, and 
/(n) is the collision integral. When superfluid mo­
tion of velocity v 5 takes place in the solution, the 
Hamiltonian has the form 

H = E (p, p)+ PVs, (2.2) 

where 8 (p, p) is the energy of an elementary exci­

tation in the coordinate system for which v5 = 0. 

The equilibrium distribution functions for the ex­
citations in a solution in which there is uniform 
normal fluid motion with velocity vn and superfluid 
motion with velocity v5 have the form 2 : 

( f e: - p (v - v ) } )-1 
n = exp t p k/ n -1 (phonons);(2.3) 

N = exp{- e.-Pk~n-vs)} (rotons); (2.4) 

, { s;-p(vn-vs) } . . . 
Ni =A ~c, T) exp 1- kT bmpunties); 

A (c, T) = N 3 (2-.:tJ.kT)-''• = (cp / m3 ) (2-.:[J.kT)-'1', 

(2.5) 
p is the solution density, c = N 3m3/(N 3m3 + N 4 m4 ) 

is the concentration, N3 and N4 are the numbers of 
atoms of He 3 and He4 per unit volume, and m3 and 
m4 are the atomic masses of He3 and He4 • For di­
lute solutions 

where 8 is the molar concentration. 

If 'V c and 'VT are small, Vn and v s are also small, 
and are proportional to a linear combination of 'V c 
and 'VT. Taking this into consideration, it is pos­
sible to linearize the hydrodynamic equations for 
the solution 10 ' 11 which take the form 

• • . oj 
p =- div j; Ci =- d!V CiVn; aT+ Vp = 0, 

+ (pc) =- div (pcvn); 

( ) 
(2.7) 

Vn -V5 =- -- o0 + --· · 1 + fls (' - kc ) 
' Pn - .. ma 

VT- (1 + ~) kT 
Pn ma Vc, 
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where Pn is the density of the normal component of 

the solution, Pn = Prw + Pni; Ps is the density of 
the super fluid component; a is the entropy per unit 
mass of the solution; a0 is the entropy per unit 

mass for pure helium II; Prw is the fraction of the 
normal density which is associated with the pho­

nons and rotons; and Pni = (pc/m 3 )f1 is the fraction 
of the normal density associated with the impuri­

ties. 

We can then obtain the form of the additional 
terms in the kinetic equation (2.1) by substituting 
into the left-hand side of Eq. (2.1) the distribution 
functions (2.3)-(2.5) and determining Vn and v5 

from (2.7). We obtain, as a result, the kinetic 
equation for the impurity excitations in a dilute 
solution of He3 in helium II: 

. [( s; 3 -, (oT oT ) os; 1 os; ] +d!VV -----kj ~-s+--- r, +kT--.-o-----p 
n T 2 / \ OS iJp • op • :) op 

(2.8) 

+ - --p+----- Vc [ 
p kT kT OS; J 
Pn m3 c op 

+ [-Pp_n (cro+ _l!c:__)P+.!:-k Ds; _ _:_i__ os;Jvr-k!__ os; Vp\. 
m3 2 op T op . ? op J 

D (N;) =I (N;) 

Neglecting the terms in (2.8) which are associated with the first and second viscosity of the solution, 
we obtain the kinetic equation in which we are interested: 

In a similar manner we can derive the equations for the rotons and phonons; these equations have the form 

n' { p kT [ o ( kc ) E i os ] } 
kT ""Pn" m;-PVc + -~ cr0 -!- ;n;- p- T op VT =I (n). (2.10) 

Here, n' is the distribution function for the rotons 
or phonons, differentiated with respect to the argu­
ment (8- PVn + pv5 )/kT. In (2.10), as in (2.9), the 
terms associated with the viscosity of the helium 
have been omitted. In order to solve this system of 
kinetic equations it is necessary to know how the 
elementary excitations interact with one another. 

The scattering of phonons by phonons and rotons 
and of rotons by rotons has already been computed 

by Landau and Khalatnikov 5 in treating the viscos­
ity of helium II. We shall consider below, there­

fore, the scattering of phonons by impurities and 
the scattering of impurities by impurities and ro­
tons. 

3. COLLISIONS BETWEEN 

ELEMENTARY EXCITATIONS 

Impurity-Raton Scattering 

The impurity-raton interaction law is not known. 
In selecting the impurity-roton interaction energy, 
therefore, we shall proceed from the same consider­
ations as those used by Landau and Khalatnikov5 

in treating roton-roton scattering. In order to ascer­
tain the temperature dependence of the kinetic co­
efficients for the solution it will suffice, in accord­
ance with Ref. 5, to determine the impurity-roton 
scattering probability as a function of temperature 
accurately to within some constant multiplier. 
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This probability is insensitive to the choice of dis­
tribution function for the interaction of the impur­
ity-roton system. 

Taking the impurity-roton interaction energy to 
be a o-function of the separation, we shall treat it 
as a perturbation. 

(3.1) 

where rand r1 are the radius vectors for the impuri­
ty and the roton, respectively, and v01 is a constant 
whose value may be determined from experiments 
on the diffusion of He3 in helium II containing 
the He3 as an impurity. We shall designate the en­
ergy and momentum of the impurity and the roton, 

byE, p and E 1, p1 , respectively; for the state prior 
to the collision we shall use unprimed quantities, 

and for that following the collision, primed. The 
probability of a transition from the state A(p, p 1) to 
the state F(p', p:) is determined from the perturba­
tion theory formula 

dw = (2.-:jh) I VAF\ 2 0 (£ + £ 1 - E'- £~) 

X (2.-:tL r 6dp' dp~ rP' 

where n is the normalization volume. 

(3.2) 

Taking the wave functions for the system in the 
form of plane waves normalized over the volume, 
the matrix element for the transition VAF can be 
readily computed and integrated over the impurity 

momentum. We obtain as a result 

dcrip = (2.-:[Ljhp) I V01 \2 o (£ + £ 1 - E'- £~) 
(3.3) 

assuming the roton to be at rest prior to the collision 
and taking the total momentum Q = p + p1 = p' + p: 
along the polar axis, we integrate (3.3) over p:: 

I= ~ o (E + £ 1 - £'1 - £~) dp~p~2 sin itd&d:p 

(A+B)/L 

~ 2L2t 2 - L2 = 4.-:r..tR / dy, 
B 2 -1 

(A-B)iL y 

(3.4) 

where 1} is the angle made by p: with the total mo­
mentum Q; 

Qf-\11-L 
1 1 IL/fL ' 

pg + ilrQ"/1-L- 2[1-r£ 

1 + i.Lr./fL 
, y =(A+ B cosit)jL. 

The symbol R in front of the integral sign indicates 
that the integration is carried out only over the re­
gion in which the integral assumes a real value. It 
can easily be shown, with the aid of the conserva­
tion laws, that I in (3.4) has a real value only for 
integration over the region l ::;: y.::;;: (A +B)/ L. Car­
rying out the computation and expanding 8 and L in 
terms of p/p0 we obtain 

cir (cos it) 

1 'i Vo1 \2 !J.I.Lr ([.L•)-':, (' [.L \'/2 (3.5) = - ----- 11. - 1 + _.. - cos2 it) . 
r. 1i4 [.L-+- fLr · [.L (.L 

Averaging over the directions of the incident mo­

mentum for the impurity we find 

(3.6) 

An absolute value for air may be obtained from ex­
perimental data 3 on the diffusion of He3 in helium 
II. It turns out to be 

(3.7) 

The impurity-roton interaction constant may be de­
termined from (3.6) and (3.7) 

I V 01 I "' 8 · l0-38 erg-cm3 • 

Impurity-Impurity Scattering 

The interaction law for the impurity particles is 

not known. Following, therefore, the considera­
tions cited above in the treatment of impurity-roton 
collisions, we select an interaction energy in the 
form of a o-function 

(3.8) 

where r1 and r3 are the radius vectors of the impuri­
ties, and v03 is some constant whose value can be 
determined experimentally. 

It can easily be seen that the computation of the 
total effective cross-section aii for impurity-impur­
ity scattering is completely analagous to the compu-



THEORY OF DIFFUSION AND THERMAL CONDUCTIVITY 909 

tation for the scatteting of slow neutrons by nu­
clei 12 , with the single difference that since the im­
purity particles are identical it is accordingly nec­
essary to symmetrize the wave functions. As a re­

sult, we obtain for aii 

(3.9) 

To obtain an approximate value we take 

whence 

(3.10) 

where the constant a. is included to take account of 
the fact that I v02 I is not actually known. 

In collisions of impurities with impurities and 
with rotons there can also take place, in addition 
to scattering, an emission of phonons due to decel­
eration. Calculation shows, however, that the 
probability for such processes is small, and hence 
they need not be considered in the phenomena 
which we shall treat below. 

Phonon-Impurity Scattering 

We shall treat the impurity as a particle in a pho­
non field. From this standpoint the internal struc­
ture of the impurity is of no significance, since 
the phonon wavelength is much greater than the 
de Broglie wavelength for the impurity. Thus it may 
be shown, as in Ref. 2, that the total perturbation 
energy for the case under consideration is 

(}fj, ()2/j, 
v =- 1/2 (pv + vp) + 8P p' + 1/2 ap2 p'2 

(3.11) + P2 
( I + 1 I b '2) -2-- ap I 2 P , 

!L 

where ~ is the zero-point energy of the impurity ex­
citation, p' the deviation of the density of the solu­
tion from its equilibrium value due to the presence 
of a phonon, v the macroscopic velocity of the med­
ium associated with the presence of a phonon, an,d 
p = - i1(\l the momentum operator for the impurity. 

Calculations show that the last term in (3.11) is 
much smaller than the first. The terms involving 
derivatives of ~with respect to p, however, cannot 
be evaluated, since the functional form of ~ = ~(p) 
is not known. We write the excitation energy in the 
final form 

1 ' ( + ) + i}/j_ I + 1/ i}/j_ 12 ( ) v=-f2PV vp apP /2ap2 P·3.12 

Further, on carrying out computations of the type 
performed in Ref. 5, we obtain for the differential 
effective phonon-impurity cross-section api the ex­
pression 

dcrp; = (Pp2/4'-hps)2 {m (n + n') (nn') 

+: [(mn) (mn') (nn') + m (n + n') (mn)] 
tJ.S 

+A+ B} 2 d0', (3.13) 

in which P is the impurity momentum, p the phonon momentum, s the velocity of sound, m = P /P, n = p/p, 
n' = p'/p' is the direction of the phonon momentum following the collision, and 

p2 (iJ/j, \2 1 02 (iJ/j, ) 1 [ s2 iJs2J A = -- --- 1 ----o (nn') +- '--- -- -., (I - nn')- - - , 
Ps iJp ; 1.1.s2 Ps iJp P" p dp 

(3.14) 

Averaging (3.13) o~er the angles of the incident and scattered impurity particles, we obtain 

dapi(P, p, ~) = ( 4:;;:s {%(I +cos~) cos2 ~ + :3:s (A+ B) (1 + 2 cos~)+ (A+ B) 2} dO', (3.15) 

where cos if;= (n'n). Integrating (3.15) over all scattering angles we find for the total effective cross-sec­
tion for scattering of a phonon of moment~m p by an impurity particle 

api = (Pp/1i2ps)2r//4'-. (3.16) 

o' = 2j 9 + lj3 {Pft-ts) A (1 + 2cos ~) + 2/ 9 (Pft-ts) B + A2 + 2AB + B2, 

the bar indicating an average over the angles. Substituting into (3.16) the numerical values of all of the 

known parameters, we obtain 
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(3.17) 

Here xis the phonon momentum in units of kT/s, 
and y is the energy of the impurity in units of 
3kT /2, so that 

p = xkTjs and p2 j2[L = 3ykTj2. 

4. TEMPERATURE DEPENDENCE OF THE 

DIFFUSION COEFFICIENT 

We shall treat first the diffusion of the impurity. 
The kinetic equations for the impurities and the 
thermal excitations have been derived above (2.9), 
(2.10); when a non-zero concentration gradient is 
present in the system they have the form 

noi P kT P11o 
---- p;r7C =I + J..· (4.1) 
kT p 11 m3 p 11 i v i e "' 

n' P 
-m PVC= lee+ lei· (4.2) 

3 P11 

The collision integrals in (4.1) and (4.2) refer to the 
following processes: lie-scattering of impurities by 
excitations; Iii-scattering of impurities by impuri­
ties; I ei-scattering of excitations by impurities; 

I e e-sc~;~.ttering of excitations by excitations. 

The solution of the kinetic equations for the gen­
eral case involves extremely tedious computations. 
For this reason we will consider four limiting cases; 
the results for the intermediate regions may then be 
obtained by interpolation. Elementary calculations 
show that for concentrations of impurity excitations 
c < 10-6 deviations from the equilibrium values of 
the rot on and impurity distribution functions are de­
termined by the scattering of rotons and impurities 
by one another. Roton-phonon and impurity-phonon 
collisions need, therefore, not be considered for 
c < l0-6 in connection with the establishment of 
equilibrium in the impurity and roton gases. 

On the other hand, the momentum transfer is de­
termined at high temperatures, as can be seen from 
what follows, by the scattering of impurities by ro­
tons, and at low temperatures by the scattering of 
phonons by impurities. In view of these circum­
stances we shall consider first the high-temperature 
region, in which the diffusion of the impurities may 
be regarded as taking place in a pure roton gas. We 
shall then consider the low-temperature region, in 
which the diffusion of the impurities may be re­
garded as taking place in a pure phonon gas. The 
expression for the diffusion coefficients in the gen-

eral case is obtained by joining the solutions ob­
tained at high temperatures with the solutions for 
the case of low temperatures. The temperature 
which in a given instance divides the high- and 
low-temperature regions depends upon the concen­
tration of the impurity excitations in the solution 
and will be determined below. 

It follows from the symmetry of the problem that 
deviations of the distribution functions from their 
equilibrium values may be sought in the form 

on;= a; (z) (p; Vc) n;, 

on= ar (s) (pVc) n (n + 1). 

(4.3) 

(4.4) 

It is essential here that the function a be angle­
independent. 

The High-Temperature Region 

Under these conditions the fundamental role in 
the thermodynamics as well as in kinetic phenom­
ena is played by the rotons. Detailed analysis 
shows that the phonons play no part in transport 
processes at temperatures above 0.6° K. In this 
temperature region we shall consider two limiting 
cases. 

1) The relative number of impurity particles is 
much smaller than the number of excitations. The 
probability for collisions between impurity particles 
is small and such collisions may be ignored. The 
concentration region for which these conditions 
hold is determined from the condition tir « tii; 
i.e., the time characterizing impurity-rotan colli­
sions is much smaller than that characterizing col­
lisions between impurities. In this case the kinetic 
equation for the impurities is highly simplified. 

The deviations of the roton distribution function, 
as a simple calculation shows, are much smaller 
than the deviations of the impurity functions. The 
roton gas may thus be taken to be in equilibrium. 
Impurity particles colliding with a roton are scat­
tered elastically. From these considerations we 
obtain 

(4.5) 

Here a!;, is the transport cross-section for scatter­
ing of an impurity by a roton. 
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Further, from (3.5), a;~ is independent of the en­
ergy of the colliding particles. From (4.5), there­

fore, it follows that 

We now compute the impurity current 

Equating the current g to the quantity- pD'Vc we 
obtain an expression for the diffusion coefficient 

f) (4.8) 

where 

Under the present conditions Pni « Pno• and the 
factor Pno1Pn in (4.8) is equal to unity. Thus the 
temperature variation of the diffusion coefficient is 
largely determined by the temperature dependence 
of the number of rotons N., which falls exponential­
ly with temperature. Under these conditions the dif­

fusion coefficient rises with falling temperature as 

fYT. 
2) The number of impurities exceeds the number 

of thermal excitations (rotons). More precisely, the 
time characterizing collisions between impurities is 
much smaller than that for impur_ity-roton collisions. 
In this case the distribution function for the impur­
ities may be taken to have its equilibrium form. 

Since the differences between the roton energy A 
and between the momentum and p0 are slight, the 
factor a in Eq. (4.4) can be regarded as energy-inde­
pendent. For the impurity kinetic equation in this 
limiting case we write 

(4.10) 

We now multiply both sides of this equation by the 
momentum p and integrate over the phase volume 
for the impurity dcr:;. Since for impurity-impurity 
collisions the total impurity momentum is un­
changed, the integral 

is equal to zero. Performing the indicated integra­
tion we obtain 

(4.11) 

Here 

(4.12) 

Solving this relation for a., we now calculate the 
roton current 

On the other hand, the total momentum of the liquid 
does not change when diffusion is present, and the 
sum of the diffusion currents of the rotons and im­
purities is equal to zero 

gr + g; = 0. (4.14) 

Consequently 

gr = pD'Vc. (4.15) 

Comparing (4.15) and (4.13), we obtain for D the ex­

pression 

In this limiting case (pn = Pni) the temperature var­
iation of the diffusion coefficient is determined by 
the variation of the normal density, which de­
creases exponentially in this temperature region. 

According to (3.5) a;~ is independent of the ener­
gy of the impurity. Performing the elementary inte­
grations in (4.9) and (4.12) we obtain 

cr. 
tr 

1 32 V. _ ~ '2kT)':z v. = cr: v. 9n; '- 3 (niL . (4.17) 
t z.r ,_ 

Thus the quantities (1/a;~v;) and 1/a;~v; appear­
ing in Eqs. (4.8) and (4.16) differ only by the factor 

32/9rr, which is very near to unity. This makes it 
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possible to write an interpolation formula for the 
diffusion coefficient which covers the whole high­
temperature region: 

(4.18) 

For the case in which tir « tu, Pno "' Pn » Pni Eq. 
(4.18) reduces to Eq. (4.8). In the other limiting 

case tir » tii, Pno « Pni "'Pn and Eq. (4.18) reduces 
to Eq. (4.16). Equation (4.18) may also be rewritten 
in the form 

(4.19) 

where the time tir characterizes the scattering of 
impurities by rotons: 

2p~ (fL,kT)'he-llikT 

(2rr)'i•7i_3 

(4.20) 

Making use of the experimental values for the dif­
fusion coefficient we can with the aid of (4.19) find 
ai~ and, consequently, the unknown impurity-roton 
interaction constant in Eq. (3.8). Thus we find 

(4.21) 

Inserting this value into Eq. (4.19) we obtain an 
expression for the diffusion coefficient. 

(4.22) 

Pno = Pnr = p~Nr / 3kT, 

which is applicable over the whole high-temperature 
region, in which the phonons play no role. 

As regards the time tii' which characterizes col­
lisions between two impurities, this cannot be ob­
tained from the experimental data. Extremely crude 
estimates for this time yield 

(4.23) 

(v02 is taken equal to w-as erg/ cm3 ' approximately 
the same rate as for the interaction between two ro­
tons). The concentration for which the times tir 
and {ii become comparable in order of magnitude is 

The Low-Temperature Region 

In this temperature region the part played by the 
rotons, both in transport processes and in the ther­
modynamics, is negligible. These phenomena are 
now governed entirely by the phonon portion of the 
excitation spectrum. As in the high-temperature re­
gion, we shall consider two limiting cases. 

l) The case in which there are few phonons as 
compared with the number of impurities. More pre­
cisely, the time tii between collisions of two impur­
ities is small as compared with the phonon-impurity 
collision time tip. Evaluation of the times tii and 
tip with the aid of (3.9) and (3.18) shows that the 
inequality tii «tip limits the region of applicability 
to thflt indicated by the inequality 

(4.24) 

This condition (4.24) indicates that in solving the 
kinetic equations for the ~resent case the impurity 
excitations may be taken to be in equilibrium for 
concentrations down to c > 10-6 • The phonons, how­
ever, are scattered elastically, and their distribu­
tion does not change (the phonons form a light gas, 
the impurities a heavy gas). Calculation shows 
that, despite the low phonon concentration, phonon­
phonon collisions are extremely important in the es­
tablishment of equilibrium with regard to energy in 
the phonon gas. The time required to establish en­
ergy equilibrium in a phonon gas has been calcu­
lated 5 and is 

(4.25) 

(x = E;/kT is the phonon energy in units of kT). The 
time tpi characterizing the scattering of a phonon by 
the impurity gas is 

(4.26) 

~ 8 + L + L_2 
0 = 45 ° 3[LkT ' 

8 is a complicated function of the parameters des­
cribing the impurity energy spectrum; in our calcula­
tions it will be taken of order unity (cf. Sec. 3). In 
transport processes the important phonons are those 
having energies on the order of 6 to 7 kT. For such 
phonons the inequality tP < tpi assumes the form 
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P/c > l. 

This latter inequality shows that at temperatures 
down to 0.1° K for concentrations c < 10-2 equilib­
rium with respect to energy will be established ra­
pidly as compared with the scattering of phonons by 
impurities. As regards the time OP for establish­

ment of equilibrium with respect to the number of 
phonons (for a more detailed discussion, cf. Ref. 
5),- this will in the region of interest be comparable 

with the time tip· Taking values for eP from the ex­
pression (jp = 2 X 108 r" we obtain 

(4.26') 

The solution of the kinetic equation for this lim­
iting case follows a procedure completely analogous 
to that involved in the calculation of the phonon 

viscosity 5 . Omitting the simple computations, we 
give directly the expression for onP 

on = n (np + l) _P _ _ kT __ tp_i _3_1_. 2 __ (p_s_f-,-,k_T.,--) (__,3_. 5_cc-3-c, 7_t_:__P.:_i /_6~P:.:__) _P V'_c 
P P Pn ms s (1 +St,pi/6p)P 

(4.27) 

The time tpi for scattering of phonons by the impur­
ity is determined from Eq. (4.26). Further, with the 
aid of (4.27) we compute the diffusion component of 
the phonon current 

gP = fponPdcP 

and, using the fact that g; =- gp =- pDVc, we find 
the diffusion coefficient to be 

_ PnpkT ·{1+0.75tp;f6p} 
D - 5.1 -- t P' 1 + St . /6 . Pn ms P' p 

(4.28) 

Inasmuch as the temperature dependence of Pnp is 

given by a f4 law, the product PnpkTtp; is, in view 
of (4.26), temperature-independent. In this region, 
therefore, the diffusion depends only weakly upon 
temperature. The entire temperature dependence is 
embodied in the factor enclosed in the braces. 

We shall now treat the final limiting case. 
2) The number of impurities is small compared 

with the number of phonons. Here only collisions 
between impurities and phonons are significant; col­
lisions of the impurities with one another are not 
important. Simple .analysis shows that in this case 
the deviations of the phonon distribution functions 
from their equilibrium values are small and may be 
neglected in the kinetic equation. 

The deviation of the impurity distribution function 
from its equilibrium value due to the presence of a 
concentration gradient can be written in the form 

on;= a; (e) (p;Vc) n; (4.29) 

The quantity a; depends upon the energy of the im-

purity. We can also write down the kinetic equa­
tions for the impurities and phonons 

(n;p I Pnim3) (p;vc) = /;p, (4.30) 
(n (n + 1) pI Pnm3) (ppV'c) = lpi + I PP" (4.31) 

We multiply the second of these equations by pp 
and integrate over the phonon phase volume; taking 
account of the fdct that in collisions between two 
phonons the total phonon momentum does not change, 
we obtain 

(4.32) 

In what follows we shall disregard the weak depend­
ence of the scattering cross-section api upon the 
phonon scattering angle. Further, it follows from 
the conservation of energy 

that the change in the energy of an impurity result­
ing from a collision will be small compared with the 
magnitude of the energy 8 i 

This is connected with the fact that the momentum 
of a phonon is small compared with that of the im­
purity. We expand the difference a[p[- a;p; appear­
ing in the collision integral in a power series to 
terms of the second order of & . After a simple in­
tegration over angle the integral equation (4.30) as­
sumes the following form: 
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_P_ We now compute the impurity diffusion current 

( 5 aai 2 a2ai ) r p~ = 3 ---ae + 3- Be"f 8 .) d-.:pnp (np + J) apiSp--;, 

(4.33) 

We thus reduce our problem to one of solving a dif­
ferential equation of the Fokker-Planck type. 

The relation (4.32) yields a condition which must 
be satisfied by the functions a;; this condition has 
the form 

The cross-section api depends linearly upon 8;. The 
solution of Eq. (4.33) is readily found 

ai = A In 8 + ( B- ~ · A) + C8 -'I•, (4.35) 

where 

A = ~ j \ ( ~-) p~ np (np + 1) d-.:P 
Pnima j \ <-

= i..tp / 2pnitn3Pnpcrp;S, (4.36) 

s ~ apinp (np + I) p; d-.:pnid-.:i 
crp;S = 

~ p~ np (np + I) d-::pnid"i· (4.37) 

The characteristic time . previously introduced can 
be expressed in terms of the quantities of (4.37) by 
means of 

1 I tpi = 0.47 apisN;, (4.38) 

B and C are constants of integration. The constant 
C must necessarily be set equal to zero, since the 
number of phonons moving in any given direction 
must be finite. The constant B is determined by 
the condition (4.32) 

(4.39) 

From this we obtain 

B == - 2A- A Jn s, 

ln 8 = ~Ins· zn;d-.:l ~ zn;d"i· 
(4.40) 

gi =- pD'vc 

=~A (Ins- Ins-~}·) Pi (piVc) n;d-.:;. 
(4.41) 

From_this, taking (4.40) into account, we obtain 

D = 8AkTpni I 3p = 4pn;kT I 3tn3PnoN;ap;S. (4.42) 

Thus we have, to within a factor of order unity 

(4.43) 

The coefficient D thus obtained increases with fall­
ing temperature according to a r-s law. 

An interpolation formula embracing both limiting 
cases at low temperatures may readily be written. 
For this we rewrite Eq. (4.28), which holds in the 
region Pnp « Pn ""Pni• in the following form: 

D=ll(Pnp)2kT 1 1+0.75tP;/ep 
Pni ma ap;sNP(4kT 1 !L52) 1 +8 tp;/ep · 

(4.43') 

Here we make use of the relation (4.38) and the fol­
lowing well-known formulas: 

Pnp = 4Ep j3s2 :::::::; (4kT I 52) Np, Pni = [LN;. 
(4.44) 

Equation (4.43), which holds for the region in which 
Pn = Pp » Pni• may likewise be rewritten in the 
form 

(4.45) 

We note further that in this region the impurity con­
centrations are extremely small, and, in accordance 
with (4.26'), 

It is now readily seen that Eqs. (4.43) and (4.45) 
can be combined into a single equation 

D = (Pnp)2~T -== __ 1 ___ 11 + 8 tpi;ep 
Pn ma a .5 N (4kT 1 !L52) 1 + BtPJeP · 

pt p 

(4.46) 

Comparing Eq. (4.18), which applies in the high­
temperature region, with Eq. (4.46), applying in the 
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low-temperature region, we note that both of these 
equations may be combined into a single expres­
Sion 

(4.47) 

in which the time ti characterizes the collisions of 
the impurity with the thermal excitations is given 
by 

In the limit of high temperatures, for which the gas 
of thermal excitations consists principally of rotons, 

Pno = Pnp• and all of the terms due to phonons may 
be neglected. We obtain as a result Eq. (4.18). In 
the low-temperature region, on the other hand, we 
neglect the rotons, andobtain Eq. (4.46). 

Making use now of Eqs. (4.21), (4.26) and (4.38), 
we obtain an expression for ti in a form convenient 
for numerical calculation: 

t· = {I-lQI3Te-:;/kT ..L 1 2-JOsp 1 + T4 I 15 c }-1 
t ' • H+T4!15c · 

(4.49) 

It should be noted that the second term in (4.49), 
due to the phonons, becomes important in this equa­
tion at temperatures below 0.5° K. This can easily 
be understood if we recall that in the thermodynamic 
treatment the phonon component of the normal den­
sity predominates only for T < 0.5° K. From the 
kinetic standpoint the times characterizing scatter­
ing of the impurity by rotons lir and by the phonon 
gas tip are comparable only for T "-' 0.5° K. For 

temperatures higher than 0.5° K, tir « tip, and, 
as a consequence, the diffusion is in this case de­
termined by scattering of impurities by rotons. Thus 
for T > 0.5° K we may limit ourselves to the first 
term in Eq. (4.49) at all concentrations: 

(4.50) 

5. THERMAL DIFFUSION 

In general, when non-zero temperature and con­
centration gradients exist in a solution (under con­
stant pressure) the impurity current g is defined by 
the expression 

g =- pD [V'c + (kr / T) V'TJ, (5.1) 

where D is the diffusion coefficient as calculated 
above (4.38), and kT is the thermal diffusion ratio. 
Simple calculation shows that the thermal diffusion 
contribution to the diffusion current is neglible 
when the number of impurity excitations is small 
compared with the number of thermal excitations. 

1) The case for which the number of impurities 
greatly exceeds the number of rotons. Following a 
procedure completely analogous to that used in cal­
culating the diffusion coefficient in the second lim­
iting case, we find for the thermal diffusion ratio 

2) The case of low temperatures, for which the 
momentum is transported by the phonons and the 
contribution of the rotons to the diffusion process 

may be neglected. In this limiting case, the ther­
mal diffusion ratio is 

For sufficiently low temperatures (T « 0.6° K), 
Pno ""Pnp and a0 "" ap, and the thermal diffusion 
ratio takes on the simpler form 

kTp = C (1- Pni apm3 /pnp kc) = C (1- [J.S2 j kT). 

(5.3') 

Comparison of kT for the roton region (5.2) with kT 
for the deep phonon region (5.3') shows that Eq. 
(5.2) can serve as a useful interpolation formula for 
the thermal diffusion ratio of the solution over the 
whole range of temperatures and concentrations: 

6. THERMAL CONDUCTIVITY 

The mechanism for thermal transport in the solu­
tion can be twofold. On one hand, heat can be 
transferred due to motion of the normal component 
of the helium. On the other hand, the presence 
within the solution of a non-zero temperature grad­
ient leads to an additional thermal current which 
arises, as in ordinary condensed media, from the 

transfer of heat by diffusion of thermal excitations. 
This thermal current is characterized by a definite 
thermal conductivity coefficient. The thermal con­
ductivity coefficient for a solution of He3 in helium 
II is defined in such a way that for zero impurity 
diffusion current g = 0 the heat current q will be 
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-q = x\iT. (6 .1) 

The thermal conductivity coefficient x for the solu­
tion is a sum of roton, phonon and impurity compo­
nents. Calculations analogous to those carried out 
for the thermal conductivity of helium 11 6 yield the 
following result: 

x = Xr + Xp + xi, 

A2AT[ 3aaT2 t~p2 ] = t _Ll_r_a_r l _ o r rr 
Xr r 3T 

f.l.r fi.;NrPno 

cp kT 5 
X·=-f··---k 

I [1. I ma 2 ' 

(6.2) 

(6.3) 

(6.5) 

where s is the velocity of sound, a0 is the entropy 
per unit mass for pure helium II, and a. is the en­
tropy per unit mass of the roton gas. The effective 
time 0 is determined by the expression 

ue = 1/tpr + 1/tpi. 

_1_ = 0,85 N.6 ~ [Po (kT I s)2 ]2 
lpr 47tS p1L2 ' (6.6) 

In the transition to the pure helium II case c .... 0, 
and xr and xP go over into the corresponding quan­
tities for helium II as computed in Ref. 6. 

It can easily be seen that for concentrations 

c > 10-6 , xi « Xr + xP over the whole temperature 
range. Substituting numerical values for the quan­
tities in (6.3)-(6.5) and dropping the negligible 
second term in xr we obtain 

2.0-103 1 
y_ = --- ------ceo: 

T 1 + 0.2ce8•91r (6.7) 

The temperature dependence of x for various con­
centrations is illustrated in Fig. l. 

7. EFFECTIVE THERMAL CONDUCTIVITY 

OF SOLUTIONS 

Experiment gives a direct determination not of 
the diffusion coefficient, but of the effective ther­
mal conductivity coefficient 
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FIG. l. Dependence of the thermal conductivity coef­
ficient for a solution of He3 in He4 on the temperature T 
and the concentration c [Eq. (6. 7)]: 1-c = I0-2 , 2-
c = 10-3 , 3-c = Io-•, 4-c = 10-s. 

(7 .l) 

where Q is the heat flow through the solution per 
unit area. The diffusion coefficient D is directly 
related to Xm· We shall derive an expression for xm 

under the restriction that the experiment be per­
formed under stationary conditions. The heat cur­
rent per unit area Q in the solution is 8 : 

Q = Zcvn + crpTVn + q' = -Xm \iT, (7 .2) 

where Vn is the velocity of the normal component of 
the solution, Z = p(f.1.3/m3 - f.1.4/m4 ), and f.1.3 and p.4 are 
the chemical potentials of the pure He3 and He4 is­
otopes. In (7 .2) the thermal current q' has the form 

, [ kr a z a z ] ( ) q =P ------- g-xVT 7.3 
T ac pT aT pT ' 
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where xis the thermal conductivity coefficient for 
the solution and g is taken from (5.11). Under sta­
tionary conditions there follows from the constancy 
of the potential <I> the equation 

~~ (~-) V' c = c ~ (_!!__) V'T (7 .4) ac p ac c , 

the equation of motion for the impurities being given 
by the expression 

g+pcvn=O. (7.5) 

Using the thermodynamic relations which follow 
from d<l> = (dp/p)- adT + (Z/p)dc and solving si­
multaneously Eqs. (7 .2)-(7.5), we can determine 
the effective thermal conductivity coefficient 

x = x + (rDT j _i!_ ~-) {c .!L (_:;__) 
m ac p ac \ c 

+ i- ~:c-( !-)}. 
For a weak solution 

c _i_ (_55_) = - ~ - _!:__ 
ac c c ma ' 

a z 
aGp-

(7 .6) 

kT 

If we also introduce into (7 .6) the value of the ther­
mal diffusion ratio from (5.4) we obtain the simpler 
expression 

where D is the diffusion coefficient determined from 
Eq. (4.52). Setting Eq. (4.47) in place of D, we ob­
tain 

(7.8) 

As we have already noted, the time t; is practically 
independent of the concentration of the solution. 
Thus the first term in Eq. (7 .8) depends upon the 
concentration as 1/c. As regards the second term­
the thermal conductivity coefficient for the solution 
-this, in accordance with (6~ 7), depends in a rather 
complicated fashion upon the concentration of the 
solution. As can be seen from the graph (Fig. 2), 
the second term in (7 .8) is negligible in the high 
temperature region for sufficiently low concentra­
tions. We then have (pn = Pno) 

(7.9) 
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FIG 2. Dependence of the effective thermal conduc­
tivity for a solution of He3 in He4 on the temperature T 
and concentration c [Eq. (7.9)]: X.m = K(T)jc +x; 
1-c = w-s, 2-c = IQ-•, 3-c = I0-3, 4-c = I0-2 , 5-
c=Kxi0-3. 

The temperature distribution in a weak solution of 
He3 in He4 in the presence of a thermal current is 
determined as follows. We write the expression for 
the thermal current (taking the one-dimensional case 
for simplicity) 

(7.10) 

and the condition that the potential <I> be constant 
along the solution 

<1>0 - ckT /m3 = const (7.11) 

(<1>0 is the solvent potential, that for helium II, 
which depends upon temperature but is independent 
of the concentration c). Further, we express the 
concentration c from (7 .ll) in terms of the tempera­
ture and an unknown constant. We substitute this 
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expression into the equation for Xm and integrate 
Eq. (7 .10) 

(7 .12) 

T0 is the temperature at the cold end of the vessel 
(x = 0). We then find, with the aid of (7 .12) and 
(7.11), the dependence of the concentration c upon 
the coordinate x. This dependence includes an un­
known constant, which can be .determined from the 
condition that the impurities must be conserved. 

d 

'I \' 
C0 = -({.) cdx, (7.13) 

0 

We shall illustrate this procedure, taking as our 
example an extremely weak solution, for which Eq. 
(7 .10) is applicable; we write the latter in the form 
[with K(T) a function of temperature] 

xm = K (T)/c. (7 .14) 

It is essential here to bear in mind that for suffi­
ciently weak solutions it follows from the condition 
(7 .11) (kc/m 3 << a0 ) that: 

crT VT =- (kT I Ill:~) vc. (7 .15) 

Thus 

I V c I c I :'5> I VT I T I, 

and, consequently, under these conditions the tem­
perature varies only slightly along the helium, while 
the concentration changes quite appreciably. Inte­
grating (7 .15), we obtain 

(7 .16) 

where Tc is a constant of the integration. Equation 
(7.15) represents an alternative form for the condi­
tion (7 .11). We now integrate Eq. (7 .10), taking 
(7.14) and (7.16) into account, and obtain 

T T 
X= _ _!_\ K (T) dT = _1_ (' kTK (T) dT 

q .) c rn 3q ~ cr0 (T - T ) 
T, T, c 

(7.17) 

Since the temperature variation is small, the coeffi­
cient preceding the logarithm in (7 .17) can be com­
puted for the mean temperature of the helium. From 
(7 .17) we obtain the temperature 

T = Tc + (T0 - Tc) e*•, 

1 I X0 = kT K (T) I m3qcr0• 

(7 .18) 

Further, using (7 .16) we express the concentra~ion 
cas 

C =- (m3 I kT) cr0 (T0 - Tc) ex!x,, (7.19) 

and, finally, we obtain the constant of integration 
Tc from the condition (7.13) 

d kT 1 
- (T0 - Tc) = C0 -- -- --;;-::---;­

x0 m 3cr0 ed/x,- 1 
(7 .20) 

Ultimately, we obtain from (7.18) and (7.20) the for­
mula for temperature distribution along the solution: 

(7 .21) 

Beenakker et al. 3 obtained experimental values 
of the diffusion coefficient for the impurities in a 
solution. In analyzing their results, however, the 
authors used in place of the entropy a appearing in 
Eq. (7 .21) another quantity {, which they took from 
the results of unpublished experiments. We have 
recalculated the data of these authors, using known 
data for the value of the entropy. This recalcula­
tion changes the value of the diffusion coefficient 

somewhat. Under the conditions of the experiment­
T ~ 1.20°, c "' 10-4 -the part played by the phonons 
was negligible (the quantity x could also be neg­
lected), and the diffusion of the impurities was de­
termined solely by their interactions with the ro­
tons. The unknown impurity-roton interaction con­
stant was determined from the experimental value of 
the diffusion coefficient at T = 1.5° K. The effec­
tive time t;, then takes the value given by Eq. 
(4.20). 

It should be emphasized that in experiments con­
ducted under stationary conditions diffusion of the 
impurities cannot be considered alone. What is ac­
tually determined experimentally, in accordance 
with (7. 7), is a certain effective thermal conductiv­
ity coefficient for the solution, representing a com-
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bination of the diffusion and thermal conductivity 
coefficients and the thermal diffusion ratio. 

The results obtained in the present work are cor­
rect for the temperature region T ~ 1.6 - 1.8° K, in 
which the rotons may be regarded as constituting an 
ideal gas. At low temperatures the applicability of 
the theory is limited by the mean free paths of the 

excitations associated with the transport phenome­
na. As usual, the mean free paths must be much 
shorter than the characteristic dimensions of the 
containers. For high impurity concentrations, for 
which the mean free paths are short down to the 
lowest temperatures, the theory is applicable down 
to the temperatures at which the Fermi degeneracy 
of the impurities becomes significant. 

In conclusion, the authors wish to express their 
deep indebtedness to Academician L. D. Landau 
for his helpful discussions. 
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The state of air compressed by strong shock waves is examined by taking dissociation and 
ionization into account. Approximate expressions are given for the density and temperature 
in this region. The radiation from the front of the shock wave is considered. With increasing 
shock-wave amplitude, the observed surface temperature passes through a maximum, owing to 
the formation of an opaque layer of air, preheated by the radiation, ahead of the front of the 
wave. A proof is given of the non-existence of a continuous solution and of the unavoidability 
of discontinuities in the velocity, density, and temperature in a strong shock wave with radi­
ative heat exchange. The wave structure is investigated in a strongly-ionized gas with allow­
ances for the slow energy transfer between the ions and electrons. 

pHENOMENA OCCURRING in strong shock 
waves are very interesting from many points of 

view. In practice we encounter shock waves during 
explosions and during the motion of bodies at super­
sonic speeds. The principal interest lies in the pe­
culiarities of the compression in the shock wave: 
the compression occurs rather rapidly, is accom-

panied by a sharp increase in the gas entropy, and 
is irreversible. Gas compression in a shock wave 
produces high temperatures, considerably higher 
than adiabatic compression to the same pressure. 

It was already noted by Muraour 1 that the glow 
observed in an explosion is neither the chemilumi­
nescence reaction of the decomposition of the ex-


