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where 

L _ T __ 3 l T + v (1- y) v 2 + v v (1 - y)- y 1 + v 
1 - n T 1 , L 2 = In ~ 0 , L 3 = In -1 - ; 

-v( -y) v0 -v0v(1--r)-y -v 
(24) 

T 2 = j 2 + v~- 2jV0 cos &0 , ~0 = I - V0 cos -&0 • (25) 

Equations (21)-(23) are valid for values of 8 0 which are not too large (8 0 « 137 mZ %) and for values of y 

which are not too small, for which the screening effect is unimportant. 

1 M. May and G. C. Wick, Phys. Rev. 81, 628 (1951). 
2 M. M. May, Phys. Rev. 84, 265 (1951). 
3 Gluckstern, Hull, and Breit, Phys. Rev. 90, 1026 

(1953). 
4 R. L. Gluckstern and M. H. Hull, Jr., Phys. Rev. 90, 

1030 (1953). 
5 L. N. Rosentsveig, J, Exptl. Theoret, Phys. 

{U.S.S.R.) 31, 520 (1956), Soviet Physics JETP 4, 455 
(1957). 

6 Ia. B. Zel'dovich, Dokl. Akad. Nauk SSSR 83, 63 

(1952). 

7 F. W. Lipps and H. A. Tolhoek, Physica 20, 85 
(1954). 

8 W. H. McMaster, Am. J, Phys. 22, 351 (1954). 
9 A. I. Akhiezer and V. B. Berestetskii, Quantum 

Electrodynamics, Moscow, 1953. 
10 A. A. Kresnin and L. N. Rosenzweig, J. Exptl. 

Theoret. Phys. (U.S.S.R.) 32, 353 (1957), Soviet Phys. 
JETP 5, 288 (1957). 

Translated by W. M. Whitney 
225 

SOVIET PHYSICS JETP VOLUME 5, NUMBER 5 DECEMBER, 1957 

Theory of Kinetic Phenomena in Liquid He 3 

A. A. ABRIKOSOV AND I. M. KHALATNIKOV 
Institute for Physical Problems, Academy of Sciences, U.S.S.R. 

(Submitted to JETP editor May 9, 1956) 

]. Exptl. Theoret. Phys. (U.S.S.R.) 32, 1083-1091 (May, 1957) 

The kinetic coefficients of liquid He3 have been computed on the basis of the theory 
of a Fermi liquid by Landau. The temperature dependences of the coefficients and 
their numerical order of magnitude have also been computed. 

I N THE PRESENT WORK, which is based on the 
theory of a Fermi liquid developed by Landau 1, 

we shall consider the problem of the viscosity and 
thermal conductivity of He3 • In accord with the 
Landau theory, the excitation energy in a Fermi 
liquid is a functional of the distribution function n. 
At temperatures close to T = 0, where the diffuse 
region of the Fermi function is not large, we can, 
according to the Landau theory, represent this func
tional dependence in the form of a decomposition in 
the deviation of the distribution function from its 
equilibrium value at T = 0. Limiting ourselves to 
terms up to first order of smallness, we have 

:o=:o(p)+Sf(p, p')~&:', 

d-: = 2dpxdpydpz/(2r:h) 3 , 
(l) 

where v is the difference between the actual distri
bution function and its value at T = 0. 

It is most natural to consider that the distribution 
is the Fermi sphere at T = 0. Then at not too high 
temperatures the excitation energy will be described. 
by the expression 

s (p) =a+ Po (p- Po)/ m, (2) 

where p0 is the limiting momentum and a and m are 
constants (in the ideal gas case, this expression 
becomes 8 = p2/2m). By Ref. 2, it follows from the 
measurement of the density and entropy of He3 that 
p0/1i = 0. 76 x 108 ern -l, m = 1.43 mile' . In view of 

the fact that the energy 8 enters into the Fermi dis
tribution in the combination 8- p., the constant a 
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can be added to 11; as we shall see, it is inconse
quential in the calculation of the kinetic coeffi
cients. 

As was shown in Ref. 2, it is possible that the 
temperature dependence of thermodynamical quanti
ties in He2 is better explained if we take as the 
ground state not the Fermi sphere but a thin spheri
cal shell, such that the excitation spectrum has the 
form 

s (p) =a+ (p- p0 )2j2nz. 

We shall discuss the results which follow from 
such a form of the spectrum in Sec. 4. 

l. THE KINETIC (BOLTZMANN) EQUATION 

(3) 

Let the motion in the liquid under consideration 
take place with a slightly inhomogeneous (in the 
coordinates) velocity u and let there be a small 
temperature gradient. In this case the distribution 
function will differ but slightly from its equilibrium 
value 

11 = llo +on, (4) 

where 

[ { z- pu- fL } l J-1 
flo = exp kT . + ' I on I~ no. 

(5) 

The quantity on is found from the kinetic or Boltz
mann equation 

(6) 

As usual, we must substitute the function n0 on 
the left side of the Boltzmann equation. In this 
case, we shall consider that at the point in the 
liquid being considered, u = 0. Substituting (5) in 
Eq. (6), we get 

iJno 1 iJno o<: d" 
y-3~Pap lVU 

1 iJn0 ( iJz 1 o< ~ ) - -z-~\Pi iJpk - 3 Pz ap; oik. 

('OUi auk 2 ~ OUz) 
X -+---O·k-

iJxk iJxi 3 ' iJxl 

- iJno (<=- fL- s) iJz_ \IT= I (n) 
iJe: T iJp ' 

where sis the entropy per particle, and in all 
terms except ano/at, we take 8 = 8(p), since they 

(7) 

contain only small values for the velocity and tem
perature gradients. 

We now transform an0Nt and shall show that this 
expression no longer depends on the term with fin 
Eq. (1). In accord with Eq. (5), we can write 

(in the variation, we consider the rate of n to be 
fixed). But, as is well known, the derivative an;a8 
is different from zero in a small circle about the 
point 8 ""fl, where it is a rapidly changing function. 
Therefore, we can consider the quantities in the 
bracket relative to this point [corrections will have 
the relative order (k T / f1) 2]. In this variation, 08 and 
Ofl are arbitrary and are not equal to each other, We 
note incidentally that the second term in the energy 
8 of (l) is of importance only in&. On the other 
hand, following the Landau theory, the distribution 
function is normalized by the relation 

where N is the number of atoms per unit volume. 
Differentiating this relation, we find 

since ~ (ono I os) ds = - 1. Comparing Eqs. (8) 

and (10), we get 

iJnn __ iJ N iJn0 ( d& ) 
---at -- - (jf -ae: \d.-: e=p.. 

(9) 

(10) 

Thus we have succeeded in eliminating &, while 
in the remaining terms, and therefore in the last 
equation, we can consider 8 = 8(p). 

The number of atoms N satisfies the continuity 
equation 

(oN 1 ot) + N div u = o. (ll) 

Thus the term with an0 /at gives the contribution to 
the term with div u and as a result this term takes 
the form: 

iJn0 ( 1 iJc N ( dr; ) ) d . --- --p-- -- !VU. 
iJe: 3 iJp d-r e=p. (12) 
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The collision integral appears on the right side 
of Eq. (7): 

I ( n) = - ~ w [ n1 n2 (I - n~) (I - n;) 

- ( 1 - n1 ) ( 1 -.n2) (n~n;)] 

X o (PI + P2 - P~ - p;) (13) 

Introducing the function angles between all the momenta and the p1 + p2 

axis will be approximately equal to 8/2 or to -8/2. 
on=- n0 (1 - n0 ) ~ = kT (8n0 j ()8 ) '¥ (14) Then we obtain 

and neglecting quadratic terms, we can rewrite it in 
the form 

I (n) = ~ wno1n02 (l - n~1) (I- n~2) 

X(·~~+ ~2- Y~- •ji;) o (Pl + Pz- P~- p;) (15) 

X o ( s1 + 2 2 - s~ ;- s;) d-c2d-c~dp; · 

The collision probability w depends, generallv 
speaking, on all four momenta. However, in this 
temperature region, where Eq. (1) is generally valid, 
the momenta whose absolute magnitude is close to 
the bounding value on the Fermi surface are of in
terest. Therefore, we can consider that w depends 
only on 8-the angle between p1 and p2 and cp-the 

angle furmed by the planes (p1 , p2 ) and (p: .. p:>. 
We can put the function 1/J in a different form 

depending on which of the kinetic coefficients is 
being calculated, i.e., which of the terms on the 
left side we keep. However, independently of this, 
we apply only one method of transformation of the 
integrals. We make use of the fact that the momen
ta of the particles in the basic region of integration 
differ slightly in absolute magnitude from the limit
ing momentum Po· If we tum the plane of the vec
tors (p1, p2) relative to the axis, directed along 
p1 + p2 , through the angle cp, so that this plane co
incides with the plane (p1 , p2 ), then we get the dia
gram shown in the Figure. It is clear that the vec
tor f will be small in absolute magnitude, and the 

, f e f . e P1 ~ P1 + z COS -z- + r Sin 2 , 

where fz is the component off along the p1 + p2 

axis, while fr is the perpendicular component. Inte
grating over dp;, we solve the 0-function of the mo
menta, while we replace the integral over d-r;'1 by 
an integral over dFr dfzdcp, introducing cylindrical 
coordinates with axis along p1 + p2 : 

We now introduce the following notation: 

x=(s~-~J.)fkT, y=(E;-!l-)fkT, 

t=(s-!1-)/kT, X=~J./kt 
(18) 

with 8 from (2). Transformation from the variables 
{,.fz, to x andy is easily accomplished with the 
help of Eq. (16). We then obtain 

where dO denotes the solid angle differential 
sin 8d()dcp on which w(8, cp) depends. We note that, 
in view of the indistinguishability of particles, the 
angle cp changes only within the limits 0 to TT. 

2. COEFFICIENT OF VISCOSITY 

We begin with the calculation of the viscosity coefficient. In this case, the tensor term on the left side 

of Eq. (7) is dominant. From symmetry considerations, it is evident that 1/J must have the form 

1 ( ae: 1 ae: ~ (aui auk 2 ~ aum ) ~ = T q (t) Pi apk - -3 Pz apz on,) axk + axl - 3- O;k axm . (20) 
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Upon substitution of this expression in the collision integral, the second factor can be transformed by the 
addition theorem of spherical functions. After integration over the angle dcp 2 , only the first terms are left, 
i.e., 

As a· result, we get the following equation for q from Eq. ( 7): 

00 00 

(mkT)~ \ dO. \ \ 
n0 (t)[l-n0 (t)]= 87t41i"cos(0/ 2) j2;; Jdx ldyw(0, cp) 

-K -X 

x+y>t->< (21) 

X flo (t) flo (x + y- t) [1 -n0 (x)] [1- n0 (y)j [q (t) + q (x + Y- t) P2 {fJ)- q (x) P2 (fJ~)- q (y) P2 (0;)]. 

In view of the fact that, in the temperature region 
we have considered, only the. values of x, y, and t 

much smaller than ~ are important, we can consider 
the lower limit in Eq. (21) to be -oo. Under these 
conditions, and assuming that q is a symmetric 
function (this is verified by the result), we are eas
ily convinced that all terms with different q can be 

put in the same form in the sense of its dependence 
on x andy. Thus the bracketed expression can be 
put in the form: 

q (t) + q (x) [P 2 (0)- P 2 (8~)- P 2 (0~)]. 

Expressions for the spherical functions in terms of 
the angles () and cp are easily obtained with the aid 
of the Figure. Integrating over the variable y, on 
which q no longer depends, we get the following ex
pression after some transformations: 

87t17L6 - w (6, cp) [.i __ (1 - 0)2 . 2 (!)- 1] 
(mkT) 3 - cos (6 I 2) 4 cos Sin ' . 

00 00 

{\ dxx[q(x+t)+q(x-t)] + 2 \ dxxq(x) 
X ~ ex- 1 ~ ex + 1 (22) 
~ 0 
t 
\ . } w(6, cp) 7t~+t2 + j dxxq(x- t) +cos (6/2) q (t) -2-' 
0 

where the bar denotes averaging over the solid 
angle. 

This expression is very complicated. However, 
analysis shows that for arbitrary assumptions con
cerning the form of w((), cp), the error in the viscos
ity coefficient will be less than 10% if we simply 
take it into account that the values we need are 
t 2 « 11 2 • In this case, q turns out to be constant, 
equal to 

647t2Ji6 r w (6, cp) < 1 0)2 . 2 J-1 (23) 
q = 3 (mkT)3 Leos (0/2) -cos Sin cp · 

In accordance with Landau's theory\ the momen
tum flux is equal to 

ITik =~Pi :;k n d-e+ oik (~ ns d-e- E). (24) 

However, it is necessary to recall that the energy is 

also a functional of the distributing function. Sub
stituting Eqs. (4) and (II) with v =on, we get 

IT \ OE (p) ~ 
ik = j Pi apk on d-e 

~ 1 an' 1 iJE (p') I 

- on f (p, p) -a I Pi -,-d-e d-e. 
E apk 

(25) 

Substituting on in accordance with li:qs. (14), (20) 

and (23), we find the value of the viscosity coef

ficient, defining it as the coefficient of propor
tionality'between IIik and (oui/oxk) + (ouk/oxi) 

-% Ou(/Oxt with opposite sign: 

"'= ~: (kTf2¥ [ 1 + f (6) P 2 (0) ::~~J 
X [w (6, cp) ( 1 -cos 0) 2 sin2 cp]-1 (26) 

cos ((l j2) . 

Thus, it is shown that q""' r-2• This dependence 
was predicted earlier by Pomeranchuk 3 on the basis 
of qualitative considerations. So far as the numeri
cal value of the viscosity is concerned, this depends 
on the definite form of averaging f(()) and w ((), cp ), 
and therefore cannot be determined precisely. How
ever, with the help of Eq. (26), we can estimate the 
order of magnitude. We shaH assume that w((), cp) 
does not depend upon the angle cp, and make use of 
the fact that, from Landau's theory, 

w (0, O) = 27rf2 (0) 1 ti. (27) 
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If we consider the quantity f to he approximately 
given by fo + ft cos e, we can find the coefficients 
fo and [1 from experimental data on the compressi
bility (4) and the relation between m and mHe'· This 

gives 

for the second viscosity vanish. Thus 
1;,/ry "'(k T /pY. 

3, COEFFICIENT OF 

THERMAL CONDUCTIVITY 

(28) We now proceed to the thermal conductivity. The 

We then obtain the following expression for the or
der of magnitude of the viscosity: 

"tJ ~ 1. 10-6T-2 poise. (29) 

Simple analysis shows that the second viscosity 
is a quantity of much higher order of smallness than 
TJ· Actually, taking into account that the collision 
integral for both cases is approximately identical, 
we can compare both coefficients, taking the cotTe
sponding integrals from the tensor term on the left 
side of Eq. (7), and from Eq. (12). Recalling that 
p~/31T 21i3 = N, we find that the terms of zeroth order 

function t/J has in this case the form 

,, = (<= (p)- [1.) (~ vr) .p q, kT dp . (30) 

In place of Eq. 12, we get here the same equation 
but with cos() in place of P2(()) in the collision in
tegral, and the factor (f - f1)/T- s on the left side. 
The presence of such a factor shows that the de
sired function ought to contain both symmetric and 
anti-symmetric parts, namely, 

q (f)= qs (t) + qa (f). (31) 

Substitution in the collision integral gives two 
equations 

00 00 00 

S7tt!6 w(6, <p) 'l 7t2+f2 \ x[q8 (x+t)+q8 (x-i)J ~·dxxq8 (x) \ ] 
-(m_k_T_)a- s =cos (6 /2) qs (f) --2- - J dx ex -1 - 2 ~ -ex-=----1--1-- J dx xq,, (x- t) ' 

0 0 ' 0 
(32) 

81t41i6k t = w (U, <p) (1 + 2cos 6) [f d 
(mkT)3 cos (0 I 2) .) X 

0 

X [qa (x- t)- qa (x + t)] 
ex -1 

0> t 

+ 2t \' dx'fla (x) + \ dx·Xqa (x- t)J + w (6, ':) qa (t) 7t2 +2 f2. 

.) ex+ 1 .) cos (6 I 2) 
(33) 

0 0 

However, in the given case, the Boltzmann equation 
does not define the complete solution of the prob
lem. To it must be added an additional condition 
which expresses the conservation of the total mo
mentum of the system, which reduces to the equality 

Jpon d-r = 0 or, in other words, 

~ dn ( de) - p- q(t)d"=O. de dp (34) 

To find the odd part qa(t), it suffices to solve 
Eq. (33), in the same way as was done in consider
ing the viscosity. So far as the even part qs (t) is 
concerned, the situation is quite different. In the 
first place we must note that q s = const makes the 
right side of Eq. (32) identically equal to zero. 
Therefore we must determine the constant term 
q 8 (0) not from this equation, but from Eq. (34). 
Here it is easy to show that the additional terms in 

q /t), namely, a2t2 + a4t4 + .. , generally do not 
contribute to the thermal conductivity. Actually, 
the appearance of such a term, for example, amt2 m, 

should change the constant term in q8 (t) by an 
amount a~ so that 

From this condition, we get 

ar:n =-am (2m)! Rm. 
co 

~ 
2m-1 

Rm= -2--dz. 
ez +1 

I! 

In the calculation of the energy flow, we must com
pute integrals of the type 

~ :; F (e) (amt 2m + a%,) d": 

' d-r) . 0 = (F de •=p. [am (2m)! Rm +am)= 0. 
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We thus come to the conclusion that, to find the 
thermal conductivity, we need only solve Eq. (33), 
and select the constant term in q5 in order to satis
fy the condition (34). In practice, as in the viscos
ity case, it suffices to find a solution under the as
sumption t 2 « 77 2• Here we obtain 

1t2kTm ) [ w (0, cp) (1 -cos 6) ]-1 

P~ cos (6 1 2) 

(35) 

The energy flow is equal to (see Ref. 1): 

Q = ~ s ~; nd-c. (36) 

Substituting (4), we have 

Q = ~ s (p) asa:) ond't 

I ~ f ( ') an' ( ') as (p'J d d , - .) on p, p ih' s p ~ -c -c • 

(37) 

Substituting on in accord with (14), (30) and (35), we determine the value of the coefficient of thermal con
ductivity: 

z = _il_ 1t2 li 3p~ (l + P~ m _a_ [ f (p, p0 ) cos 6 ] ) [-w (tl, <p) (1 -cos 6) ]-1 

3 m4T 2TC2Ji3 iJp p p~p, cos (tl 1 2) _ • 
(38) 

Thus the temperature dependence of the coefficient 
of thermal conductivity is expressed by a T "1 law, 
which also coincides with the qualitative predic
tion of Pomeranchuk3• 

Estimating the numerical value of~ in a fashion 
similar to what was done in the viscosity case, we 
obtain the relation* 

~ "-' (40/T) erg/ cm-sec-deg. (39) 

4. LIMITS OF APPLICABILITY 

The resulting expressions for the coefficients of 
viscosity and thermal conductivity in each case 
cease to be valid in the temperature region k T "-' /1· 
However, in addition there exists a limitation which 
moves back the region of applicability of the theory 
in the direction of much lower temperatures. It con
sists in the fact that the energy interval of excita
tion of order k T of interest to us must be much 
greater than the quantum uncertainty in the energy 
arising from the collisions, i.e., 

(40) 

where --r is the time between collisions. We note 
that fulfillment of condition (40) is required not 

*In the estimate, we pick out the term with fin Eq. 
(35). An argument in support of this is the fact that if 
we take into account 

_a_[' (p, Po) J ~ _f_ 
Bp P Po p~ ' 

then the term with f adds about 0.2 to the expression in 
round brackets. 

only for the calculation of the kinetic coefficients, 
as was the case earlier, but also for the validity of 
the entire theory of the Fermi liquid1. 

We can determine the collision time for He3 from 
the Boltzmann equation if we write it in the form 

Dn =- onj-c, 

where Dn denotes the left side of the equation. • 
Comparing this expression with Eqs. {7), (14), (20), 
(30), we get 

't~qkT. (41) 

For the different processes which we have consid
ered, the functions q are different, but for an esti
mate, we can make use of any one q, for example, 
the one obtained in the determination of the viscos
ity. In this case, condition (40), with consideration 
of the numerical values of the coefficients, gives: 

T < 0,05°. (42) 

It is possible that such a small value is connected 
with the inaccuracy of our estimate, in the first de
gree arising from the replacing of w(e, cp) by w(e, 0). 
However, it is sufficiently clear that even in the 
best case one can hardly expect that the theory 
would be suitable at temperatures higher than 0.1-
0.20. This completely corresponds to the fact that 
the theoretical curve computed in Ref. 2 for the en
tropy or thermal capacity ceases to correspond to 
the experimental data above 0.3° K. 

Now let us consider briefly what would be ob
tained in the case of a spectrum of type (3). It is 
not difficult to see that in this case the tempera-
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ture dependences of the kinetic coefficients would 
remain the same as for a spectrum of type (2). With 
regard to the numerical values of the coefficients, 
it turns out that in the given case they depend on a 
large number of unknown quantities, such as df/ dp 
and the higher terms of the expansion of the energy 
in p- p0 • In view of this, calculation of these co-

efficients is of no interest. The estimates of the 
order of magnitude that we have made show that in 
all probability, the coefficients will be of an order 
larger than in the case of a spectrum of type (2). 

As was shown by us in Ref. 2, for a spectrum of 
type (3), we must consider not only the low temper
ature range but also the Boltzmann region. This is 
quite easy, as in this region, the kinetic coeffi
cients ought to depend on the temperature. Actually, 
in this case, the situation is the same as for the 
rotons in He II. In accord with the calculations of 
Landau and KhalatnikovS, the roton viscosity 
does not depend on the temperature. Thus in the 
Boltzmann region, we must expect 1J = const. To 
find the coefficient of thermal conductivity, we 
must make use of the relation rr./Tf"" c/m*, where 
cis the heat capacity for a single particle, and m* 
is the effective mass of the excitation. But the ef
fective mass of the roton, as is well known (see 
Ref. 6) is equal to p~/3kT. Thus in this case we 
must expect x."" T. In other words, the curve x.(T) 
will have a minimum. 

If we apply limitation (40) to the case under ex
amination, it then appears that the calculations in 
the Boltzmann region can be valid if the tempera
ture is higher than some limit. An estimate shows 
that this limit corresponds to several degrees. 
Hence the theory which pertains to the Boltzmann 
region can, in the best case, indicate a definite 
tendency in the temperature dependence of a quan
tity, but cannot delineate this dependence exactly. 
The same applies to the calculation of thermody
namic quantities carried out in Ref. 2. 

Therefore, on the basis of data on thermodynamic 
quantities and the coefficients 1J and x. we cannot 
select any definite spectra. The fact is that in the 
case of a spectrum of type (3), the second viscosity 
(ought to have a value comparable with the first. 
We can convince ourselves of this, just as before, 
by taking the corresponding interval from Eq. (12). 

In zeroth order, the integral does not vanish, in con-
• trast to the case of a spectrum of type (2). Thus, 

whenever the second viscosity is finally measured 
in the region of very low temperatures (for example, 
by sound absorption), we can expect more or less 
of a verification of the form of the He3 spectrum. 

In conclusion, we note that there are lacking at 
the present time any sort of measurements which 
could be compared with the theory developed above. 
Measurements of viscosity recently carried out by 
Zinov'eva* apply to the temperature region from I 
to 3° K. In this region, the viscosity is slightly 
temperature dependent and changes approximately 
from 2.2 X ro-s to 1.7 X IO·S poise. If we compare 
this with Eq. (29), an impression is created that 
the spectrum of type (2) leads to too small a value 
of the viscosity, although naturally Zinov'eva's 
data refer to a very remote temperature region, and 
the accuracy of the estimate of the coefficient in 
Eq. (29) is not large. On the other hand, such a 
slow change in the coefficient of viscosity and its 
magnitude is not in bad agreement with the results 
for spectrum (3). However, because of what was 
pointed out above, this cannot be considered as 
proof of the correctness of such a spectrum. 

In conclusion, the authors express their gratitude 
to Acad. L. D. Landau for discussion of the results 
of the research. 
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