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Taking (4) into consideration, we transform ( 1) 
into the form 

(acp ;at)+ (vV) 9 + A9 = q, (5) 

where A is an operator determined by the expression 
Acp=-S(f, cp) -S(cp, f) and q=S(cp, cp). Sinee 
use of a distribution function makes sense only 
where one deals with sufficiently large volumes 
containing many particles, we must assume the func
tion cp to be a small quantity. Therefore, we may 
approximately use in q, which is a quantity of the 
second order of smallness with respect to cp, the 
correlation (2) whence we obtain 

< q (r, v, t) q (r0 , v0 , t 0 ) > 
=(A+A*)f(r, v, t)a(r-ro)a(v-vo)a(t-to), (6) 

where A* is the operator acting upon the velocity v0 • 

Let us denote by G the Green function for Eq. (5), 
i.e., the operator by whose action on the source we 
can obtain the solution of this equation. Then we 
obtain from (5) and (6): 

< cp (r, v, t) ql (r0 , v0 , t 0) > 
=GG*(A+A*)f(r, v, t)a(r-ro)a(v-vo)a(t-fo), 

(7) 

where G* is the operator acting upon r0 , v0 , t 0 • 

Eq. (7) also furnishes a solution for our problem. 
If we put, approximately, A= 1/'t, where 't is the 
average time between collisions and assume that f 
is not a function of r and t, then (7) takes the form 

< ql (r, v, t) cp (r0 , v0 , 10 ) > 
= e-/t-t,//'<" f (v) a ( r- fo- V (f- to)) a (v- Yo)• (8) 

However, for a more exact consideration of the prob
lem and also in the non-stationary case, we must 
solve Eq. {5), that is, a linearized kinetic equation 
with a random source. 

The physical sense of this equation is evident. 
Actually, every act of collision leads to two par
ticles being withdrawn from the initial density and 
to two particles with different velocities appearing 
in their place at that same point in the space. Eq. 
(5) also describes the further development of such a 
random disturbance of the distribution function. 

Eq. (5) is, with respect to form, entirely analo
gous to the Maxwell equations with random sources 1 

used in the theory of electric fluctuations. This is 
not surprising, since in the case of thermodynamic 
equilibrium, equations of this type can be obtained 

by starting from the general theory of fluctuations 2 • 3 • 

The kinetic derivation of the formulae (5) and (6) 
considered here possesses, in addition to greater 
clarity, the advantage that it is correct also in the 
non-stationary case. 

It must be noted that according to (7) the parti
cles are found to be only slightly correlated before 
collision. The correlation arises from such chains 
of collisions where two impinging particles collide 
with two others and these latter collide with one 
another. Since four particles participate in this 
chain and we have even neglected triple collisions, 
we may neglect the correlation of the particles he
fore the collision resulting from {7). 

I should like to express my deep gratitude to 

Academician M. A. Leontovich fordiscussing this 
report with me. 
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T HE FEW STUDIES that have been made so far 
on the effect of fast neutron irradiation on the 

elastic properties of metals and alloys show either 
that the effect is entirely absent or that it is exceed
ingly small. The modulus of elasticity, as far as we 
know, has been studied only in austenite steel and 
in copper. Neither case showed any change in the 
modulus of elasticity for a total flux of 1019 neu
trons/ cm2 1 • The shear modulus was studied in neu
tron- irradiated copper, and the residual change at 
room temperature was not greater than l% 1• 
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The latest measurements on copper 2 show that the 
change in the modulus of elasticity on irradiation 
does not amount to more than 1 - 2%. 

We studied the effect of fast neutron irradiation in 
a nuclear reactor on the compressibility of aluminum 
and magnesium. Since this quality is directly con
nected with the elasticity and shear moduli, and 
since no change in these moduli was found in the 
materials investigated so far, it was to be expected 
that the compressibility, too, would not change ap
preciably, under the influence of neutron irradiation. 

Samples in the form of cylinders 6 mm in diameter and 
6mm high, were prepared from electrolytic materials 
of engineering purity. The compressibility measure
ment was made with apparatus developed in the 
ultra-high-pressure physics laboratory for measuring 
volume compressibility by the piston displacement 
method, which apparatus will be described in another 
communication. The effect of friction was allowed 
for by taking the piston displacement vs. pressure 
curves on both rising and falling pressure and plot
ting the mean curve. The measurements were carried 
out after first subjecting the sample to a maximum 
pressure of about 15,000 kg/cm2 • 

The samples were irradiated in a nuclear reactor. 
The total neutron irradiation was 1.07 x 1019 neu
trons/ cm2 • After irradiation, the compressibility was 
measured under the same conditions as before irra
diation, although, on account of the residual activity 
of the samples, the measurements could not be car
ried out until 72 hours after the irradiation. 

The measurements showed that for magnesium and 
aluminium the piston displacement vs. pressure 
curves coincide completely before and after irradia
tion, i.e., irradiation has no effect on the compress
ibility, to the accuracy of our measurements, about 
5%. Since the experiments were carried out at or
dinary temperature, the distortions produced by the 
irradiation may have been partly wiped out. Pos
sibly at lower temperatures, with a preliminocy an
nealing of the samples, the effect of irradiation 
would be considerably greater. 
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FOR SIMPLICITY WE SHALL consider even-even 
nuclei. In the collective model of the nucleus 

it is assumed that nucleons outside of filled shells 
can be described by a single-particle .approximation 
and that the nucleons in the nuclear core of com
pletely filled shells have only collective properties. 
As collective coordinates we shall use the three 
Euler angles which describe the orientation of the 
nucleus in space and {3 and y 1, which define the 
deviation of the nucleus from a perfectly spherical 
shape. 

In an adiabatic approximation we can regard the 
outer nucleons as moving in the field of a nuclear 
core of fixed shape. The interaction energy of the 
outer nucleons with the core, averaged over their 
states of motion is <Hint > = AfJ cos y, which will 
depend on the coordinates {3 and y and will act as 
additional energy to determine the equilibrium shape 
of the nucleus. A depends on the number of outer 
nucleons and their quantum numbers and can be 
either positive or negative. 

In the collective model 1 this energy is defined 
by 

For a given value of fJ the potential energy in (l) 
possesses a minimum at y = 0 and rr and becomes 
infinite for y = ± rr/3, ± 2rr/3. 

Nuclei are evidently very stable with respect to 
variation of y around the two possible equilibrium 
values 0 and rr, which correspond to axial symmetry. 
Therefore we shall hereinafter consider only the 
vibrations which are associated with a variation of 
of {3 for the fixed values y = 0, rr. 

For y = 0 Eq. (l) becomes 

E E + c""2_B r:;o+c ("" "")2 M2 
- P 2 r-o- 2 ~--'- 2 "- 1-'o + 6B ~2 ' (2) 


