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Re If+ (cu) + f_ (cu)- f+ (f.L)- f_ (f.l)] 

00 

cu2-f.l2\ dk' 
= ~ j k' 2 _ k 2 [cr+ (k') + cr_ (k')] 

0 

00 

(3) 

Using the experimental values of the phase 
shifts3 , we obtain 

Re If+ (!L) + f_ (f.l)] =- 0,041; (1 +viM), 

where 7r is the Compton wavelength of the meson, 
and J1. and M are the meson and nucleon masses, re
spectively. Inserting (3) into (2), after some simple 

operations we obtain 

(4) 

(5) 

11=41\2 ~ x(x~Z) (~ Re(f+(x)-j-f_(x))-j-0,04(1-J-f.l/M)], x=~ 
0 fL 

(6) 

In order to calculate the integrals we make use 
of the experimental 4 values for a± (E) and 
Re f ± (x ). \\e obtain the following values: 
10 = 20 mb, 11 = 11.5 mb. Inserting these values 
into (4), we obtain a 00 = 30 mb, which is in agree
ment with the experimental data4 ,. The accuracy of 
a00 is limited by the accuracy of the experimental 
data for a± and Re f ±. 
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THE PROBLEM of scattering slow neutrons by 
protons bound in a molecule has been treated 

in the first approximation by Fermi 1. In several 
other works 2" 4 evaluations of the further approxima
tions have been made. Of particular interest is the 
variational method developed by Schwinger and 
Lippmann3 , with the aid of which Lippmann calcu
lated neutron scattering by a hydrogen molecule in 
the second approximation, and verified the results 
of Breit and Zilsel 2 who used a different model for 

1Goldberger, Miyazawa, and Oehme, Phys. Rev. 99, 
986 ( 1955). 

2 L. B. Okun', I. I a. Pomeranchuk, J, Exper. Theoret. 
Phys. 30, 424 ( 1956), Soviet Physics JETP 3, 307 ( 1956). 

3 J, Orear, Phys. Rev. 96, 176 (1954). 
4 Cool, Piccioni, and Clark, Phys. Rev. 103, 1082 

(1956). 
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the molecule. Soon, however, Ekstein's work 4 ap
peared, where it was proved that the second ap
proximation of the Schwinger-Lippmann method for 
neutron scattering by bound protons always diverges, 
except if the proton is hound to an infinitely heavy 
nucleus. Ekstein commented, "whether the finite 
result found by Lippmann is due to the special 
choice of wave functions ... or the limiting process 
used in the evaluation of the integral, remains un
decided." 

In this note we investigate the question of con
vergence of the second approximation in the problem 
of slow neutron (E == 0) scattering by a proton hound 
in a molecule of mass M. 

In the Schwinger-Lippman method the scattering 
matrix Tba for zero-energy neutrons from state a to 
state b is given in the second approximation by the 
equation 

Tba =- (4rr:Ji 2ajm) {~ x; (r) Xa (r) dr + al}, 

I'-::~-=\ x; (r) ["" X* (r') x. (r) (2f.l/tn) exp (ikya I r- r' I) -1] Xa (r') drdr', 
j ~ Y r a I r- r'.l 

(l) 
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where m is the proton mass, 

!'· = mM I (M + m); 

a= (M -m)/ M, ky = [2[1-lt.-2 (£- Wy)]'l., E z 0, 

r is the coordinate of the proton relative to the cen
ter of mass of the remainder of the molecule, Xy (r) 
is the eigenfunction of the proton in the molecule 

3 

(for simplicity we shall not consider other degrees 
of freedom in the molecule), a is the scattering 
amplitude of a neutron by a free proton, and W 'Y is 
the energy of the proton in the molecule. The sum
mation over y is taken over all proton states in the 
molecule. 

Breit and Zilsel 2 replaced the molecule by an 
idealized system consisting of a three-dimensional 
oscillator. In this case 

W y -- H'n,n,n, = (li.2 I [l.P) ~ (ni+1/ 2) ~j2 , [l.P = rn (M- m) I M, ikya =- b (2 ~nJ ~7)'/z, 
i=I i 

(2) 
_ exp{-r7!237} ri (M-m 'lz 

Xy "= Xn,nzn, =If 0 i 2"i nil V7t)'lz H ni (~ J' b = M + m) ' 

where the {3i are constants which determine the potential energy of the proton for elastic scattering on 
the ground state. Using Eq. (2), it can be shown that in Eq. (l} 

! ( 1 + q7 '2 2 'l) 
00 exp - [r. +r .. + 4q. r. r. 

2 (1 __ 2) R2 ' ' ' ' ' 

1 .. _1 = ~ ~ ~"- 2[1. n _____ q-=i..,.."_i ===-----
2 V 7t ~'t" lz m i ~ i Y 7t Jlt - q2 

' 

Inserting[.·.] into (l), we obtain 

8 00 

I= V1t ~ d-r {~ If [4-r + 2;37 (1- q;)]-'lz _ (l6•'1•fl}. 

(3) 

From the form of the integral of Eq. (3) it follows 
that it diverges only in the region of small 1:. In 
order to investigate the integrand as 1:-> 0, let us 
expand qi in a series, so that 

In order for the integral of Eq. (3) to converge, it is 

necessary that 

2!1- ! m = (l + b2)-% . (4) 

Noting Eq. (2), we see that condition (4) is not sat
isfied, so that the integral diverges in the region 

'T "'0. 
Thus ·the second approximation in the Schwinger-

Lippmann theory diverges for neutron scatterinf on 
a harmonically hound proton. Breit and Zilsel ob
tained a finite value in solving a similar problem as 
a result of eliminating the divergent part of the in
tegral by the replacement 't -> 2 't on going over from 
the second integral in their expression (3. l) to their 
expression (3.2). This method is mathematically 
invalid. 

It is easily shown that, however, the second ap
proximation of Eq. (l) always converges if we use 
the wave functions of real molecules rather than of 
idealized systems. In a real molecule a highly ex
cited state corresponds to a decaying system, when 
the wave functions of the proton motion relative to 
the rest of the molecule can he given in terms of 
plane waves Xy = exp (ipr) with energies 
Wy = 1i2p2/2J1p· In this case iky a=- bp, and after 
replacing summation over y by integration with re
spect to p, the integral over that part of the sum 
over yin Eq. ( 1) which corresponds to high excita
tions (which are all that can cause the integral to 
diverge) can he written 

I = 2[1. \ dr-/ (r) {C dpeipr I dr' exp (- bp [r- r' I)- m I 2[1. e-ipr'. (r')} 
Po ma ) ·b J J [r _ r' I Xa 

p, 
(5) 
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For sufficiently large p0 , Eq. (5) can be calculated 
in the same way as was done by Ekstein 4 , obtaining 

00 

{ · · ·} = (4rr)2 Xa (r) [ 1! b" -;:] ~ dp. (6) 
Po 

From the definition of b and 11 it follows that the ex
pression in square brackets in Eq. (6) vanishes. It 
is not difficult to show that nonzero neutron en

ergies also give a finite result. 
Thus when using wave functions for real mole

cules in the calculation according to Eq. (l), we ob

tain a finite result. This conclusion contradicts 
that of Ekstein, since he mistakenly omitted the 
factor a in the exponent of Eq. ( l) and stated that 
ky = ip, rather than the correct expression 

ky = ipyJl/Jlp• 
The results of Breit and Zilsel are correct he

cause an artificial (mathematically nonrigorous) 
method was used to eliminate the divergent part of 
the integral, which in turn, is due to the idealiza

tion of the problem being considered. 

1 E. Fermi, Ricerca sci. 7, 2, 13 (1936). 
2 G. Breit, P. Zilsel, Phys. Rev. 71, 232 (1947). 
3 B. Lippmann, J. Schwinger, Phys. Rev. 79, 481 

(1950). 
4 H. Ekstein, Phys. Rev. 87, 31 (1952). 
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T HE STATE OF A GAS is completely described 
by the particle-distribution function in the 

phase space f(r, v, t); therefore the problem of fluc
tuations in gases leads to the study of the correla
tion characteristics of the distribution function. 

Ordinarily one understands by f the statistically
average density of the particles in the phase space 
which, naturally, cannot fluctuate. Speaking of the 
fluctuations of the distribution function we must, 
however, bear in mind the "true" density 

F(r, v, I)= La(r-r)a(v-vi), 
i 

where the summation is carried out with respect to 
all particles. We shall consider the density F to be 
a random quantity which only on the average coin
cides with f. 

The function F satisfies the equation 

~f + (v\7) F 
(l) 

= _!__ 8F(r, v, t) r aU ([ r- r' [) F (r', v', t) dr' dv', 
m av .) ar 

where m is the mass of a molecule, and U is the po
tential energy of the interaction of the molecules 

among themselves. In an ideal gas we may neglect 
the interaction of the particles and obtain then from 
(l) F(r, v, t) = F(r- v(t- t0), v, t0 ) whence 

< tp (r, v, t) <p (r0 , v0 , to)> 

=f(r, v, t)a(r-v(l-t0)-r0)a(v-v0), (2) 

where cp= F - f and the angular brackets denote the 
averaging. 

Our problem consists in finding the correlation of 
(2) with allowance for the collisions. If the gas is 
not very dense, we may confine ourselves only to 
the accounting of paired collisions, and then the 
right half of E q. (l) may be approximate! y repre
sented in the form of the collision term S (F, F): 

S(F, F)=~ {F(r, v', I)F(rr. v~. I) 

-F(r, v, t)F(r1 , vi> t)}[v-v1 lpdpdxdv1 , 
(3) 

where pis the collision parameter, pdpdx is an 
element of the surface which is perpendicular to the 
relative velocity v- v1 and passes through the point 
r, r1 is the coordinate of this element, v' and v; are 
the velocities of the particles before the impact 
which are transformed after the collision into v, v1 • 

It is approximately assumed here that the collision 
occurs at that instant when both particles intersect 
the surface which is perpendicular to their relative 
velocity. 

If we average ( l) using the collision term in the 
form of (3) and neglect the correlation of the par
ticles before the collision and the difference be
tween r and r1 , we shall obtain the ordinary 
Boltzmann equation 

~f + (vv) f = ~ {f (r, v', I) f (r, v~, t) 
(4) 

- f (r, v, I) f (r, vr, t)} I v- v1 I pdp dz dv1 • 


