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The energy losses of a uniformly moving charged particle in a laminar dielectric are con
sidered. A general expression is obtained for the losses in the case in which the particle 
moves in an unbounded laminar medium or in a wave guide filled with a laminar dielectric. 
The polarization losses are studied in detail. An expression is derived for the spectral dis
tribution of the parametric Cerenkov radiation. The Cerenkov radiation in the case of thin 
layers is studied. It is shown that division of the dielectric into layers leads to an increase 
of the intensity of the Cerenkov radiation. The Cerenkov radiation in a thin-layered plasma 
is considered. 

AS IS WELL KNOWN, the Cerenkov and Doppler 
effects can be reduced to the ordinary resonance 

between the driving force caused by the uniform mo

tion of a charged particle or dipole through a homo
geneous medium and the characteristic vibrations 
of the electromagnetic field in the medium 1 •2• The 
condition for appearance of the Cerenkov effect is 
that the speed v of the motion of the particle must 
exceed the phase velocity of the propagation of 
waves in the given medium. 

In the case of uniform motion of a particle through 
a laminar (spatially periodic) medium one can ob
tain conditions in which forced parametric resonance 
can occur. Unlike the cases of ordinary Cerenkov 
or Doppler effects, the condition for resonance is 
here not the equality of the frequency of the driv-
ing force and the characteristic frequency of the 
field, but the equality of the frequency of the driv
ing force and the frequency of vibration of the free 
electromagnetic oscillations in the laminar medium. 
It can therefore he expected that the conditions for 
Cerenkov radiation in the presence of forced para
metric resonance will be different from the condi
tions for the ordinary Cerenkov effect, and the para
metric Cerenkov effect will have a number of spe
cial features. 

As is well known, the use of parametric resonance 
for the generation of electromagnetic oscillations 
has been the subject of a great many papers. First 
to be considered in this connection are the papers 
of ~landel'shtam and Papaleksi and their collabo
rators3. It must he pointed out, however, that in 
these papers the wavelengths generated were large, 

on account of the large inertia pf the variable para
meters determing the parametric resonance. In the 
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present case the system is almost without inertia. 

This makes it possible to use the phenomenon of 
parametric resonance for the generation and ampli

fication of very short electromagnetic waves. 

It can he expected that the parametric Cerenkov 
effect will occur also if the speed of the particle is 
less than the phase velocity of the wave in the 
medium. Indeed, as was pointed out by Vavilov 4 , it 
follows from the interference treatment of the Ceren

kov effect that on passage of a uniformly moving 
particle through a layer of dielectric radiation 
occurs even when the speed of the particle is less 

than the phase velocity of the wave in the dielec
tric. Here, however, it is necessary that the optical 
thickness of the layer of dielectric he less than TT. 

The multiple repetition of this effect in parametric 
resonance must lead to its amplification. It can 
also be expected that the parametric Cerenkov ef
fect will occur in media with dielectric constant 

less than unity,. and even in media in which the die
lectric constant can take negative values. A spe-

cial study will therefore be made of the case of the 
parametric Cerenkov effect in a laminar electron 
plasma. 

\\'hen a uniformly moving particle passes through 
a medium a considerable part of the energy is ex
pended in polarization losses. It is important there
fore to study the peculiarities of polarization losses 
In laminar media. 

In considering the energy losses of a particle in a 
laminar medium we shall start with the system of 
Maxwell equations describing the interaction of a 
uniformly moving charged particle with electromag
netic waves propagated in the medium: 



ENERGY LOSS OF CHARGED PARTICLE PASSING THROUGH A LAMINAR DIELECTRIC 721 

1 a ~ (z) oEz 4rt 3 (r) (1) --a rH, =--at +- ev S (vi-z) ·)~r , r r T c c ~" 

where the operators E: and /l are defined by the rela
tions 

A • t iwt A iwt ( ) iwt 
8 (z) e'"' = 8 (w, z) e , fL (z) e = fL w, z e , 

(2) 

and e is the charge and v the speed of the particle. 

We shall seek solutions for the components of the 
electromagnetic field in the form of Fourier integrals 

en 

u(r,z,t)= \ ei'"1uw(r,z)dw. 
.J 

-00 

(3) 

Then from Eq. (1), using Eq. (2), we get the follow
ing equation for the longitudinal component of the 
electric induction D z ,w = s(cu, z)E z ,w: 

_!__ ~ ( aDz. "' ) + 8 ~ (-L aDz, "') + k2sfLDz, "' 
r ar r ar i)z e: az 

= ikes[L e-iwZ/V a (r) + -=--a (r) ~ (_!__ e-iWZ/V)\ , (4) 
1tC r 1tV r az S 

k=~. 
c 

In the case in which one has to consider the ener-
gy losses of a charged particle moving along the axis 
of a wave guide filled with dielectric, the dependence 
of D on r can be written in the form z 

co 

where R is the radius of the waveguide and a.n is the 
nth zero of the 13essel function of order zero. Sub
Eq. (5) into Eq. (4) and using the orthgonality con
tion of the Jesse! functions, we obtain the following 

equation forD '·' =X (z): z, v..~n 

d ( 1 dX) ( " a;,) 8 - - -- + k·s11. - ·-- X 
dz e: dz ' R 2 

( 1 . \ 
= ikesfL e-iWZ/V + = ~ 7 e--tWZ/V) • 

1tC 1tV az 

(6) 

If the charged particle is moving in an unbounded 
laminar dielectric, perpendicular to the layers, it is 
natural to look for the dependence of Dz on r in the 
form 

co 

where X =D k is also determined by Eq. (6), with 
z' (t) ...L. 

a. / R replaced by k.1... This equation is valid for an n 
arbitrary variation of s(z) and 11 (z), and is the basic 
equation of our problem. 

In the case in which s(z)and p.(z) are periodic 
functions of the variable z, Eq. (6) is an equation 
with periodic coefficients, the right half of which is 
a known function of z. The general solution of the 
inhomogeneous equation (6) is 

X (z) = l./1 (z) [A- V2 (z)] + U 2 (z) [B + V1 (z)], 

(8) 
where A, and B are constants of integration and 

z 
V ( ) 1 \ [ike[L U ( ) e 1 dU1 (z)J -iwzlv d 

1 z =w.) --:;;c 1 z ---;w7---;rz- e ' z, 
0 

z 
V (z) = _ _!__ \ [ikefl. U (z) - _e_ _!__ dU2 (z)j e-iwziv dz, 

2 W ~ 1tC 2 1tV S dz 
0 

ul (z) and u2 (z) being linearly independent solutions 
of the corresponding homogeneous equations which 
satisfy the conditions 

l./1 (z + L) = p1U1 (z), U 2 (z + L) = Pzl./2 (z), 
(9) 

L is the period of the structure of the laminar medi
~tm, and p1 and p2 are constants of absolute value 
unity. Using Eq. (9), one readily shows that 

V1 (z + L) = V1 (L) + p1V1 (z) e-iwL!v, 
(10) 

Since the energy losses of a uniformly moving 

charged particle in a laminar medium must be a pe
riodic function of z with the same period as the 
structure, we find from Eq. (3) (cut= cuz/v): 

eiwz/v Dz."' (r, z) = eiw <z+L)/v Dz, "'(r, z + L). 
(ll) 

This condition means that if the field at a certain 
point z where the charge is present at a given in
stant is E , then this value of the field will occur at 

z 
the point z + L only when the charge arrives at this 
point. In particular, condition (ll) is satisfied if we 
assume that a similar rei at ion holds for the field 
component X 

X (z) = eiwL!v X (z + L). (12) 

Dz."' =~X (z) J0 (kJ. r) kJ_ dkJ., (7) Condition (12) enables us to determine the arbi-
0 trary constants A and B, and thus to find the field 
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produced by a uniformly moving charge in a laminar 
medium. 

in the case in which the medium is composed of al
ternate layers of two dielectrics. 

The total energy loss of the charged particle is 
found by the well known formula6 

\\e assume that the dielectric constant and perme
ability of the 1 ayer of dielectric of thickness 
a(O.:;z~a) are £ 1 and f11 , and those of the layer of 
thickness b (as;:z -:;:.L, where L =a+ b) are £ 2 and 

where E =X/£(w) and X is the field of the charge in 
the medium, determined above. \,e calculate the loss 

flz· l'hen the solutions of the homogeneous equa
tion corresponding to the inhomogeneous equation 
(6), which satisfy the conditions (9), have the form 

where 

[ ) ui (L) - PI ( )] U 1 (z) = U 1 (0) u 1 (z - u2 (L) Uz z , 

, [ ( ) u1 (L) - P2 ( )] U2 (z)=U 2 (0) U1 Z- u2(L) Uz z , 

U 1 (z) =cos p1z, u2 (z) = (e 1jp1) sin p1z, Pi= e1!J-1k2 - ki for 0..::::;;: z ~a; 

U1 (z) =cos p1a cos P2 (z- a)- (e2pife1p2) sin p1a sin p2 (z- a), 

U2 (z) = (sdp1) sin p1a cos p2 (z- a)+ (s2/p2) cos p1a sin p2 (z- a), 

P~=s2!J- 2k2 -ki for a.-:::;;:z~L, 

(14) 

(15) 

k1 =an /R for a laminar dielectric hounded by a wave
guide, and k1 =kJ.. for an unbounded laminar dielec
tric. The quantities p1 and p2 are found as the roots 
of the quadratic equation: 

The relations (8) and (15) make it possible to de
termine the field Ez produced by a uniformly moving 
particle in the laminar medium under consideration 
and, according to Eq. (13), to determine the total 
energy loss of the particle. p2-2Ap+ 1 =0, A =cosp1acosp2b 

(16) 
V.e note, however, that the greatest practical in

terest attaches to the energy loss averaged over the 
period of the structure, i.e., 

dcfJfdz = e ~ Ez. wk 1.!z~vtk1. dk1. dco, 

L 

E I - __!__. \ (--1 -X (z) eiwt'\ dz z, wk 1. z~vt- L ~ e: (w, z) )z~vt · 
0 

Using Eqs. (8) and (14), and also Eqs. (15) and (16), we find: 

+ :22~ sin p2b (cos p1a- cos : a)]- 2Z1Z 2 [sin : a (cos p2b 

-cos: b)+sin; b(cosp1a-cos: a)]+ 

+ Z~ r=~ sin p1a (cos p2b- cos~ b)+ e: 2w sin p2b (cos p1a- cos .. ~ a)]}, PI v v P2V v 

z1 = ( 1 - 1 ) , Zz = ( 1 - 1 ) , 
Pi- w2jv2 p~- w2jv2 e:1 (Pi- w2jv2) e:2 (p~- w2jv2) 

cos~ = cos p1a cos p2b- 2; (p1 e:2 + P2/e:I ) sin p1a sin p2b. 
P2e:l PI e:2 

(17) 

(18) 
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The first two terms in (18) represent the fields 
produced by the uniformly moving charge in the first 
and second media respectively. The remaining terms 
describe interference effects that arise in the pass
age of the charged particle through the laminar me
dium. As can he seen from Eq. (18), these terms go 
to zero if a or b goes to zero. 

3efore proceeding to the study of the expression 
(18), we note that these formulas can also he ob
tained in another way. 

The laminar medium under consideration consists 
of alternate layers of two homogeneous and isotropic 
dielectrics. Therefore in each of these layers Eq. 
(6) is an equation with constant coefficients. To ob
tain the solutions in the entire medium, it is neces
sary to satisfy the proper boundary conditions at the 
surfaces separating the layers. 

\\e suppose that the parameters of the layer 
-a::;;z:;;O are 8 1 and p.1 and those of the layer 
0::; z :;b, are 8 2 c,nd 11-2· These layers are repeated, 

forming an unbounded laminar dielectric with a 
period L = a + b. Then in the first region, ac
cording to Eq. (6), we have: 

£~. wk_l 

= Aeip,z + Be-ip,z+ ike (ILI-1fet~ 2 ) e--iwz!v, (19) 
rcc Pi _ (J)2jv2 

and in the second region: 

£;, wk _l 

= Ceip,z + De-ip,z +ike (!Lz -1/ez~z) e-iwz!v.(20) 
• 'TrC p~ _ (J)2jv2 

From Eq. (1) we find the corresponding exp.::es
sions for the radial components of the field. 

The arbitrary constants A, B, C, and D are deter
mined from the boundary conditions at the surfaces 
of the dielectrics and the conditions of periodicity 
for the fields. We present here only the expressions 
for the coefficients C and D, which are needed in 
what follows: 

C = !~ Z1 {[ipi 8 2 sin p1a- 81p1p 2 (cos p 1a- eiwa!v)J (e-ip,b _ e-iwb!v) e-iwL/v 

+ 8lPlP2e-2i<nLu (I - 2 cos Pl a. ei<na/v + e2i<na/V)} 

2ie Z { [. 2 • ( . I ) . - 1rl::.- 2 tp281 SID p 1a- 81 82p1 COS p 1a- e'"'a v ] (e-•P:b- e-i<nb/v) e-iwL/v 

+ 8ls2ple-2iwL/v (I -- 2 cos pla. eicuaJv + e2i<naJv)}, 

D = !~ zl { 81PlP2e-2i<nL/v (I - 2 cos Pta. ei"'aJv + e2io>aJu) 
(21) 

- UPi 8 2 sin p1a + 81p1p2 (cos p1a- ei"'alv)] (eiP•b _ e-i<nb/v) e-i<nL/u} 

+ !~. 22 { 8l82p1e-2i<nLJv (J - 2 COS pla. e-i<na/z• + e2i<na/v) 

- [i8iP2 sin p1a + 81 82 p1 (cos pp- ei"'aiv)] (eiP•b _ e-i<nbJv) e-i<nLJv}, 

~ = - 4sl E2PIP2 ( e - 2 iwLJv- 2 cos~. e -i<nL/v + 1); 
-t 

Z1, Z2 and cos 1/J were determined previously. 
Carrying out the averaging of the field ( 19), (20) 

and making a number of simplifications, one can 
again obtain Eq. (18). 

In calculating the total losses according to Eq. 

(17), one must integrate Eq. (18) over all frequen
cies in the range (-oo, oo), Since (18) is an odd 
function of cu, the value of the integral is deter
mined only by the residues of the integrand at the 
singularities located on the real axis. The path of 
integration consists therefore of the real axis and 
suitable detours around the singularities located on 
it. 

By direct calculations one can convince oneself 
that all the singularities of (18) are simple poles. 
They are given by the equations 

a) s1 ((!)) = 0, b) 82((1))=0, 

c) cos ((t)L I v)- cos~= 0, d) Pi- (!)2lv2 = 0, 

(22) 

The energy losses of the charged particle that 
are associated with the zeroes of the dielectric 
constants 8 1 or 8.:! are polarization losses. 

The roots of Eq. (22, c) give the radiation of the 
particle in the medium. In fa"ct, the frequencies de
termined by these poles satisfy the relation 

cos (t)L I v = cos p1 a cos p2b 
(23) 
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and correspond to waves propagated in the medium 
in question, since Eq. (23) is the dispersion equa
tion of the laminar dielectric. 

Radiation at a frequency satisfying Eq. (22, c) 
but not satisfying Eqs. (22, d or e), does not occur 
in a homogeneous dielectric with dielectric con
stants 81 or~. and is a special Cerenkov effect due 
to parametric resonance. It can therefore be called 
Cerenkov radiation. 

The connection between this radiation and the 
Cerenkov effect appears particularly clearly in the 
case of thin and closely spaced dielectric layers, 
when the laminar dielectric is electrodynamically 
equivalent to a homogeneous and anisotropic di
electric. In this case the parametric Cerenkov radi
ation reduces to the ordinary Cerenkov radiation in 
the anisotropic dielectric. 

The energy losses associated with the roots of 
Eqs. (22, d or e) give the proper Cerenkov radiation 
in the first and second dielectrics, respectively. 
This radiation is propagated in the laminar medium 
if the corresponding frequencies satisfy also condi
tion (23). The energy lost by the particle in proper 
Cerenkov radiation in the unbounded laminar medium 
is propagated also in directions perpendicular to the 
motion of the particle. The frequencies so radiated 
do not satisfy Eq. (23). 

Consider now the polarization losses. Assume 
that if t:z(w) == 0, then 81(w) f- 0. In this case, in the 
integration of the (18) over the frequency it is nec
essary to keep only those terms for which 82 == 0 is 
a pole. 

By several transformations of Eq. (18) we obtain: 

- b ~~ 1 
Ez. wkl. z~vt = - T ;:tC" 32e2 P2 _ w2!v2 

• 2 I 

and consequently: 

where w0 is a root of the equation ~(w) == 0. 
The first term in Eq. (24) is the ordinary polariza

tion loss in a layer of dielectric of thickness b with 

dielectric constant82 • The second term is due to 
the presence of the boundaries. 

From Eq. (24) it follows that the presence of 
boundaries always leads to a reduction of the po
larization losses. In fact, in the second term the 
integral is taken with an essentially positive inte
grand, and thus always reduces the total polariza
tion loss. 

Since the interference effects caused by the 
boundaries of the dielectrics are important only for 
wavelengths that are not very small in comparison 
with the structure period, and the thicknesses of 
the discs are at least such that a macroscopic 
treatment is valid, it is clear that for very high k l. 
the boundary effects already do not play any im
portant part. Therefore the second integral in Eq. 
(24) does not diverge at the upper limit, and the in
tegration over k.L. is taken to i~inity. 

In the evaluation of this integral it is expedient 
to divide the region of integration into two parts: 
(0, 1/b) and (l/b, oo). Then in the integration over 
the first region the integran.I can be simplified by 
supposing that k _J_b « l. This is justified, since 
the integrand reaches its maximum for k..l.b « l. 
In the second integral the main contribution comes 
from the region k.L b » 1. Therefore: 

2e2 w 0 b [ (1 + w~b2 12v2)- cos (w0 bjv) 
--02-(de:"/dw)o L- (w0b!v)2(1 +(~u0b;v)2) 

V · bw J + --- arc tan _ 0 • 
/Jwo v (25) 

For sufficiently small values of b we have 
w 0 b/ v « 1, so that the polarization losses are giveh 
by: 

) ~ ~ b ~b 
(d..£'jdz) - - - In --

- <D polar- v2 (de 2 jdw)0 L 7,4 · 
(2G) 

When the thickness of the dielectric discs is in
creased, the role of the boundary effects is dimin
ished, and thus the second term in Eq. (25) is also 
decreased. For sufficiently large b we have 
W0 b/v » 1, and Eq. (25) goes over into the well 
known expression for the polarization losses in an 
unboun.fed dielectric with dielectric constant 82 : 

)(2 t):.! 
d fljd . c" Wo ] ( 1 + "' \ 

-- ( lO Z)polar = vi- (de 2 jdw)0 n w~ ) · (27) 

From Eqs. (26) and (27) it follows that a particle 
loses less energy through the polarization of the 
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medium in a laminar dielectric than in a solid di
electric, if it travels the same distance in the di
electric in the two cases. If zeroes of the dielec
tric constant 8 2 occur at not just one but at several 
values of the frequency, the polarization losses in 
the medium are given by the sum of expressions 
(25) calculated for each of the frequencies wi for 
which €2 = 0. 

In order to study in more detail the role played 
by transition processes in polarization losses, we 
consider these losses within a single dielectric 
layer, before averaging over the period of the struc
ture. In doing this we shall start from the expres
sion (20) for the fields. The zeroes of the dielec
tric constant 8 2 will be poles only for the coeffi
cients C and D. which determine the field in the di
electric layers with the constant 8 2• Since for 
0 .:::; z .:;;; b we have Eq. (20), where C and D are 
given by (21), we get the following expression for 
the polarization losses: 

2 ' X2 V2\ 
(d p 'd ) - e Wo I I I + m \ 

- {[) I z polar - v" (dE2 / dw)o n I\ we ) 
? " 

- d ~e~ ) b [ s! n x ( I --- ·;) J ( 1) + sin w1 · .T ( I - "[)], 
v ( E~ I w 0 

co 

j ("') = \ x2dx coshyx 
1 .\ x2 + x2sinhX ' 

0 

z 
·; = b ' 

(J)ob 
Y.=--

v 
(28) 

From the relation (28) it follows that in a single 
dielectric layer the loss of energy by the particle 
in polarization of the medium is not uniform. The 

integrals J cannot be expressed in terms of known 
functions, so that the dependence of the energy 
loss on the depth can be found only by numerical 
,calculations. 

Here Vbd = LiJw/Jtf;, while wand k.l. are related by 
Eq. (23). The region of integration over k ..L is the 
segment of the real axis on which Eq. (23) is satis
fied for real c:u. 

The integral /(y) is a monotonically increasing 
function of the pa~ameter y = z/b. Since the main 
contribution to the value of the integral comes from 
large values of x, and for large x the integrand is 
proportional to e-xO-'Yl, /(y) increases exponen
tially with increasing y. The integral!(1- y) de
creases with increase of y. Consequently, these 
integrals take their greatest values at the corre
sponding boundaries of the dielectric. Each of the 
integrals is multiplied by a periodic function, so 
that as a whole the second term in Eq. (28) is an 
oscillating function with amplitude decreasing to
ward the center of the dielectric layer. The ampli
tude of the maximum variation is proportional to 
1/b, so that the part played by the second term 
decreases with increasing thickness of the layers. 

The de crease of the polarization losses near the 
boundaries of the dielectric also explains the pre
viously noted reduction of the average polarization 
losses in laminar dielectrics. 

We now consider the parametric Cerenkov radia
tion. In the general expression ( 17) for the total 
losses, the parametric Cerenkov effect corresponds 
to the poles of the integrand (18) which give radia
tion and do not lead to the ordinary Cerenkov effect. 
i.e., the roots of the equation (22, c) when 

p~ f, w2 /v2 and p; f, w2 /v2• 

For the parametric Cerenkov radiation we can 
find the spectral distribution of the radiation and 
write down in general form the expression for the 
energy lost by the particle to the radiation. Inte
grating Eq. (18) with respect to frequency [taking 
into account only the poles given by Eq. (22, c)], 
we have 

(29) 

Eq. (23) can be used to change variables in the 
integral (2 9). In fact, from this equation we find: 
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and the integral takes the form: 

- (d<!)ldz)par. = ~ f"' dw, 

- f kl ((J))(Pi- p~)2 . F 
f"' - [v- . (J) a<jl l( 2 (J)2 ( 2 (J)2 \ j2 ' 

sm ·0 L · iJk .l _Pl- v2) P2-(}2) (30) 

fw is the spectral distribution of the parametric 

Cerenkov radiation. The limits of the integration 
in Eq. (30) are determined by means of Eq. (23), 
and the direction of integration is chos.en in such a 
way that it corresponds to increasing k . 

The conditions for the parametric radfation, like 
those for the ordinary Cerenkov effect, restrict the 
frequencies emitted by the particle. Therefore in 
the integration of the expression (18) over w the in
tegral is in reality different from zero only over a 
certain range of frequencies. It can turn out that 
over this whole region or over a certain part of it 
the wavelengths radiated exceed ~onsiderably the 
period of the dielectric structure, i.e., 

(31) 

where ~q,=v.p/c, V.p being the phase velocity of the 
wave. 

When the condition (31) holds, the study of the 
expression for the energy loss is decidedly simpli
fied. As is well known 7 • 8 , a laminar medium in 
which electromagnetic waves satisfying the condi
tion (31) are propagated.is equivalent in its electro
dynamic properties to an anisotropic dielectric with 

effective values of the dielectric constants s,. and 
Ez given by 

e, = (az 1 + be2) I (a+ b), 

Zz =(a+ b) e1zd (ae2 + be1). 
(32) 

It is natural to expect that in this case Eq. (18) 
will reduce to the well known expression for the 
field of a charge moving uniformly in an anisotropic 
dielectric 9• 11• In fact, using Eq. (31), we get from 
Eq. ( 18) for p.1 = fl2 = I: 

According to Eq. ( 17) the total energy loss in 
this case is given by 

- (d<!) I dz) 

In integrating Eq. (34) over frequency we shall 
assume that owing to a slight attenuation in the di
electric the poles of the integrand are displaced 
from the real axis. These poles are given by the 
roots of the equation 

After integration with respect to frequency the at
tenuation is let go to zero. Since in Eq. (34) the in
tegral with respect tow is equal to the sum of the 
residues at the points given by Eq. (35), the inte
gration is taken only over the range of frequencies 
that satisfy this equation as k j_ is varied from 0 to 

Krn: 

Consequently: 

- (d£ I dz) = ~~ \ ( 1 - e: 182\)wdw. (37) 
_) ' r, 

The direction of integration over this range is 
chosen in such a way that the quantity k j_ given 
by the relation (35) is increasing. Then the inte
grand will change sign with change of direction of 
integration, and the necessity of taking the abso
lute value is avoided. 

The result obtained agrees with that of Sitenko 
and Kaganov 12*; i.e., when the condition (31) holds 
one can in fact calculate the energy loss of a 
charged particle moving in a laminar medium from 
the formulas for the Cerenkov radiation in an aniso
tropic dielectric. The dielectric constants of the 
equivalent anisotropic dielectric are given by for
mulas (32). 

Let us consider some concrete cases. Take 

Then 

In the case under consideration the range of inte
gration over frequency specified by Eq. (36) falls 
into two parts. This means that the spectrum of the 
radiation of the particle 

* For a homogeneous anisotropic medium. 
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or 

[where R '= bAB2/L(l- (32)], does not contain the 
frequencies specified by the inequalities 

c.>~ + ~ A >c.>2 > (u~ + bA / L for a > b, 

2 b 4 2.2 A c.>o+-r' >c.> >c.>o+a /L for a<b. 

when a= b the two regions coincide. 

It is convenient to represent the Cerenkov radiation loss (37) as the sum of two terms, obtained by in
tegration over the first and second regions, respectively, 

For a> b: 

J = e2b A J(i- ?,2) -In ?--b} 
1 2v-L l ' a ' 

(39) 

For a= b: 

l1 =!:_A (I- ~2) +_I_ ln ------• { x;.v2 1 
4v2 t' 2 w~ + A f 2 j ' 

Finally, for b >a: 

From the formulas given it follows that on rela
tive thickening of the dielectric discs the main part 
of the Cerenkov radiation loss is shifted from the 
first frequency region to the second. 

Let us consider the case b > a, which allows the 
passage to the limit a-> 0 of the homogeneous and 
isotropic dielectric with dielectric constant 
8z = 1 + A/(w~ - w2). For a -> 0 the width of the 
first region goes to zero, and the integral I 1 over 
this region goes to the value 

(42) 

I 2 
R < c.>o, (40) 

(41) 

if R' > (,)~. 

The radiation given by (42) corresponds to the 
frequency w2 = w~ + A at which the dielectric con
stant of the medium goes to zero, and, according to 
Eq. (36), it cannot be propagated in the medium. 
Therefore Eq. (42) gives the polarization losses 

The integral over the second region is 
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and gives the ordinary Cerenkov radiation in the di
electric in question. From Eqs. (42) and (43) it fol
lows that in an isotropic and homogeneous dielec
tric the polarization losses considerably exceed 
the Cerenkov radiation loss. 

The effective constants Ez and E, given by (3R) 
no common zeroes. Therefore, according to Ref. 12, 
it cou1d be expected that polarization losses are 
absent in the laminar dielectric. 11ut the foregoing 
analysis shows that in this case the polarization 
losses may indeed be considerably reduced, but re
main finite. This seeming inconsistency is ex
plained by the fact that in a laminated dielectric 
the phase velocity of electromagnetic waves is 
zero in the neighborhood of the frequency given by 
c,} = w~ +A, and consequently the condition for the 
applicability of the approximation (31) is not satis
fied. Therefore, Eqs. (39)-(41) for the Cerenkov 
radiation do not describe the total energy loss of a 
charged particle in a dielectric divided into thin 
layers. The radiation loss is accompanied by the 
polarization losses given by (26). 

Comparison of Eqs. (41) and (43), which give the 
radiation energy losses in the laminar and solid di
electrics, shows readily that in the laminar dielec
tric the energy losses in the second region of fre
quencies is smaller by about a factor b/L than in 
the solid dielectric, i.e., these are quantities of 
the same order. Together with these, in the laminar 
dielectric there are radiation losses, concentrated 
in the first region of frequencies. They are of the 
same order as the polarization losses in the solid 
dielectric, i.e., are much greater than the radiation 
losses in the solid dielectric. 

Thus when an isotropic dielectric is divided into 
layers, the frequency that previously determined 
the polarization losses broadens out into a band of 
frequencies, and an intense Cerenkov radiation 
arises in this band. The radiation loss increases 
and becomes comparable with the polarization loss. 
Furthermore, as b/ L is decreased the frequency re

gion in which the intense Cerenkov radiation is 
concentrated is displaced toward longer wave
lengths. 

For ordinary dielectrics the effect of reduction 
of the polarization loss can be observed only in 
very thin layers of the dielectric (films), since the 
polarization losses in such dielectrics are deter
mined by frequencies lying in the optical region. 

It must be remarked that conditions (31) and (36) 
can also be simultaneously satisfied in the micro
wave region, if the laminar medium is formed by an 

electron plasma. In particular, these conditions 
can be satisfied in the motion of charged particles 
through bunches of electrons. 

As is well known, Cerenkov radiation is in gen
eral absent from an unbounded plasma. The radia
tion energy losses arise upon the application of an 
external magnetic field, when the plasma becomes 
an optically active medium 13 • On division of the 
plasma into layers, according to the results presen
ted above, the intensity of the Cerenkov radiation 
becomes large, since the radiation losses become 
comparable with the polarization losses. ~~oreover, 

the radiated frequencies are in the microwave re
gion. Therefore the occurrence of an intense Ceren
kov radiation in laminar dielectrics (plasmas) can 
find wide application in radio physics for the gener
ation and amplification of ultrahigh frequencies. 

In the passage of a particle through a laminar 
plasma (bunched electrons) 

Tlere n is the density of electrons in the bunches 
and b is the width of a bunch. Then the condition 
that the wavelengths radiated in the first frequency 
region be large in comparison with the structure 
period takes the form 

Putting A = Q2 and w~ = 0 in Eqs. (39)-(41), we 
get the following expression for the total Cerenkov 
radiation loss 

(44) 

and according to Eq. (26) the polarization loss is 
given by 

- . 4r.ne4 b (xmb) 
- (dJ) / dz) polar.= mv2 T ln 7!f . (45) 

Under the actual conditions the boundaries of the 
plasma layers are.somewhat diffuse. Therefore it 
is of interest to take into account diffuseness of 
the boundaries. This problem can be solved when 
the condition (31) is satisfied. Indeed, it is shown 
in Ref. 7 that if the properties of the medium vary 
continuously and the period of these variations is 
sufficiently small, such a medium is equivalent in 
its electrodynamic properties to an anisotropic di
electric with effective values of its dielectric con
stants given by: 
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L L 

sr = 1 ~ e (z) dz, 
0 

1 1 ~ dz 
E; = T e: (z) · 

0 

(46) 

It is natural to expect that the energy loss of a 
charged particle in such a medium will also be de
termined by Eq. (37), with E;,. and E:z given by (46). 

Assuming a concrete form of the diffuse boundaries, 
one can solve the stated problem. 

For example, if over the range of a single plasma 
layer the particle density increases linearly from 
zero to its maximum value n0 in edge regions of 
thickness 7], the effective values of the dielectric 
constants are given by: 

b (b- 'tl) n~ 
Er = 1-y--b-W2' 

(47) 

On the other hand, if over the range of a single plasma layer the particle density varies continuously ac
cording to the sinusodial law 

n (z) = n 0 sin ; (b- z), (48) 

then 

From these formulas it follows that the quantity 
E;,. depends only slightly on the degree of diffuse
ness of the plasma layers, while E:z is mainly de
termined by the nature of the boundaries. There
fore the range of frequencies of the Cerenkov radia
tion arising in a laminar plasma depends essential
ly on the character of the boundaries [this frequen
cy range is given by the inequalities (36)], while 
the spectral distribution of the radiation inside this 
range does not depend much on the diffuseness. 

In con elusion the writers express their gratitude 
to K. D. Sinel'nikov, A. I. Akhiezer, and G. Ia. 
Liubarskii for valuable discussions. 
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