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~~-- "kr Ni=eiy 1i;2pw e' 

(e is the unit vector of the polarization of the sound 

wave). We note that the change in the chemical 

potentia~ is taken into account by having \j - xij• 
and not >..ij' enter into u12" 

Since 1iw «flo, 1ik « p0 , then 

where ()is the angle between the vectors k and 
v = adap. Substituting this expression in Eq. (19), 
we get the value of y given by Eq. (18). We note 

that the coincidence of the results of classical 
and quantum theory in the case wr » s/v is essen-

tially connected with the small value of s/v in 
comparison with unity. 

In conclusion the authors express their gratitude 
for valuable discussions to L. D. Landau, I. M. 
Lifshitz and I. Ia. Pomeranchuk. 
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The excitation of rotational states in nuclei by neutrons is studied in the energy range 
from the threshold up to 1.5-2 Mev. 

I. STATEMENT OF THE PROBLEM 

W E SHALL INVESTIGATE interactionsbetween 
neutrons and nonspherical nuclei and the ex

citation of rotational states, using an optical model 
which has been modified to take into account the 
nuclear deformation caused by the existence of ro
tational states. 

On the usual optical model 1 the total scattering 
cross section is divided into two parts: 

(l) 

where a se is the elastic scattering cross section 
for a spherically symmetrical complex potential, and 

ac includes both the cross section rTce for the for
mation of a c~pound nucleus with subsequent emis
sion of particles of the same energy and the reac
tion cross section (Feshbach, Porter and i\eisskopf 
call ac the cross section of compound nucleus for-

mation, which is not quite correct because it in
cludes the cross sections of direct expulsion proc
esses and the excitation of collective motions which 
will be considered below). All these processes are 
described by the imaginary part of the complex 
potential. 

For nonspherical nuclei this model must be mod
ified as follows: l) the complex potential must be 
nonspherical; 2) since the deformed nucleus is ca
pable of rotational motion, the nonspherical poten
tial of the optical model must be capable of a 
change of orientation. 

In the interaction between a neutron and a nu
cleus different rotational levels can be excited, 
i.e., the rotational velocity in the potential can 
change. \'ie thus have a problem in which the vari
ables which characterize the orientation of the non
spherical potential must be regarded as dynamical 
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variables. The Hamiltonian can then be put into the 
form 

where V (r, ()) is the nonspherical complex poten
tial, r is the neutron radius vector, 0; are the Euler 
angles which define the directions of the nuclear 
deformation axes, and Trot is the nuclear rotational 
energy operator which acts on the e;. Bohr 2 showed 
that for an axially symmetrical deformation the op
erator can be written in the form 

where Q2 is the operator of the square of the total 
nuclear angular momentum and Q0 (Q0 + l) is its 
value in the unexcited state. By solving the 
Schroedinger equation 

Hlj;(r, 0;) = Elj;(r, 0;), (4) 

we can calculate the elastic scattering cross sec
tion a se for a non spherical potential, the cross sec
tion arot for the excitation of different rotational 
states, and the combined cross section (i, of the 
other processes which are associated with the imag
inary part of the potential. On this model the total 
cross section is thus divided into three parts, viz: 

a = a se + a rot + a c • (5) 

Just as a se is only the portion of the elastic scat
tering cross section that is not associated with the 
formation of a compound nucleus, arot is only that 
portion of the excitation cross section which is not 
associated with the same process. However, the 
small value of the imaginary part of the potential, 
obtained by comparing the calculated and measured 
total neutron cross sections up to about 3 Mev, 
shows that for such energies the average probability 
of compound nucleus formation is small. It therefore 
seems that the excitation of rotational states in the 
interaction between a neutron and a nucleus does 

not proceed principally through the formation of a 
compound nucleus but rather through the direct trans
fer of energy to the collective motion. This means 
that in the indicated energy range a rot is the main 
portion of the excitation cross section for rotational 
states. Vie shall hereinafter limit ourselves to these 
energies. 

The exact solution of (4) would evidently be very 
complicated. No solution has yet been obtained 

even for the simpler problem of scattering by a non
spherical potential without rotation. We shall there
fore consider slightly deformed nuclei. More pre
cisely, if 

V (r, 61) = Vo (r) +VI (r, 61); 

V0 (r)='0 for r>R1 ; 

VI(r,OI)=O for r<R1 , r>R2, 

(6) 

we shall regard as small and shall neglect the quan
tities (k6.R) 2 and (M/R1)2, where f!..R=R 2 -R 1 , 

k2 = 2mE/n2 • If we do not claim high precision in 
calculating the cross section, these conditions are 
valid for the majority of nuclei in the given energy • 
range. \\'henever the conditions are not satisfied, 
our treatment will be of the nature of a limiting case. 

We shall also assume that the nuclear deforma
tions are axially symmetrical and thus 
~ (r, 0;) = V (r, & ) , where & is the angle between 
the radius vector and the deformation axis. This is 
well fulfilled for almost all deformed nuclei. Intro
ducing for convenience 

U (r, 61,) = r'{J (r, 61); V0 (r) = (2mjh2} v-:(r); 

V1 (r, &) = (2mjh2) VI (r, &), 

we obtain 

[(d2jdr2 ) + k2 - V0 (r) -V1 (r, &) 

- (f2jr 2)- (2mjn2) Trotl U (r, 6;) = 0, 
(7) 

where l2 is the operator of the square of the neutron 
angular momentum. Eq. (7) must be solved subject to 
the conditions 

(&) 

Vie note that k'f!..R (where k'is the average wave 
vector of the neutron inside the nucleus) will not be 
regarded as small. Therefore the phase difference of 
the neutron waves traversing the nucleus parallel to 
the major and minor semi-axes can be large and the 
pattern of scattering by a nonspherical nucleus can 
thus differ essentially from that for a spherical nu
cleus. For real nuclei, for which we can expect to 
obtain a rotational spectrum, k'f!..R ·a- l; therefore for 
such nuclei the scattering is strongly influenced by 
the deformation and cannot be treated by perturba
tion theory. 

We shall show that a solution can be obtained be-
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cause when (8) is satisfied we can neglect in (7) the 
terms k2 , 2m Trot /1i 2 and Z2 I r 2 in the region 
R1 < r < R2 • The equation can then easily he solved 
in this region. The problem is. then solved by 
smoothly joining this solution with the solutions for 
r < R1 and r > R2 • 

2. THE WAVE FUNCTION FOR R1 < r < R2 

For the purpose of proving our last statement we 
write (7) in the form 

U (r, 61) = U0 (r, 01) 

r I I I (9) + ~ G (r, 01; r 1 , 01) V1 (r1 , .&') U (r1
, fii) drl dQI d61; 

where jjMOo is the eigenfunction of the operator 
oX 

f for the ground state. 
rot 

From the symmetry properties of the nuclear wave 
function it follows 2 that each state can he described 
by a superposition of the functions jjOMo v and jjMOo • 

or• o-X. 
l3ut it can he shown that this does not change the 
result. 

Let G (r, ei; r', ei) he the Green's function of (7) 
without the term V 1 (r, .& ) • It is given by (r, r' > R1): 

I "" ~Q ~·Q 1 G (r, 61; r', 61) = -'.J GkQ (r,r1)DM>< (Oi) DM>< (01); (11) 
Q.M 

l ~ iz (kQr) hr (kQr 1
) Yrm (r.!) Y;m (0.') for ,~ > r; 

Gk (r, rl) =- __!__ t,m 

Q kQ ~ iz (kQr') hr (kQr) Y lm (0.) Y ;m (!!') for r' < r; 
l,m 

h (x) = ~i [hr (x) exp (2.iof)- h; (x)]; ht (x) = v·1t; H1l_J•t. (x); 

k~ = k2 - (mjl)[Q (Q + 1)- Q0 (Q0 + 1)]; 
) 47t "" .[. • ~k (r = T ."-' t Jz (kr) Y lm (!!) Y lm (O.k), 

l,m 

where s? is the complex scattering phase of a neu

tron with a wave vector k0 by the complex potential 
V0 (r). 

avo (R 6.) 
F (2) (Q 0·)- l• ! 

• ' - aRl 

+ ~ [ ao (R1~~~ R;. 6;) e (O.', O~) 

(lOa) 

For (9) in the region R1 < r < R2 and with (8) sat
isfied for all essential k0 of the problem we can 
expand the functions iz(x) and h1(x) in (10) and (11) 

in powers of k0 (r- R1), of which only the first two 

terms of the series are retained. In complete anal
~gy to the calculations given in Ref. 3 we obtain 

a2G(R 6 · R1 61
) + l• i• l' 1 (Q' 6')] d!).' df/. (13) 

aRlaR~ "'l ' 1 1 

for this similar problem 

U (r, 01) = p<Il (0., 0;) + (r- R1 ) F{2 ) (0., 01) 
r 

+ ~ (r- r') Vdr' ,.&) U (r', n, 01) drl; 

• 
p(l) (0., 6t)=U0 (R1 ,0I) 

+ ~ [a (Rl,o;;R~. o;) ~ (O.', o;) 

(12) 

co 

~ (0., 61) = ~ VI(r, .&) U (r, 61) dr; 
0 

co 

Yi (0., 61) = ~ V1 (r, .&) U (r, 61) (r- R1) dr. (14) 
0 

In the expansion it was considered that the 
joining conditions make j1 (kR 1) "'k/k' extremely 
small while j("' 1; therefore in the expansion of the 
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products j 1 h1 we consider terms of the order 

j(h((k f).R)2. Differentiating (12) twice with respect 
to r we obtain 

(15) 

which is the desired proof. 
In accordance with (15) we have 

U (r, fli) =A (Q, Oi) ~1 (r, -9') + B (Q, fli) ~2 (r, &), 

(16) 

where cp1 and cp2 satisfy (15) and the conditions 

'fl (R1. &) = 1; 8~1 (R1, &)j8R1 = 0; 
( 
~2 (R1. &) = 0; 8~2 (R1, &)j8R1 = I. 

(17) 

By joining (16) with the solutions for r < R1 and 
r > R2 we can obtain A and B and thus complete the 
solution. The usual method of joining requires that 
we obtain the derivative au; dr, which is not desir
able because when U (r, O,) is calculated to terms of 

' the order k f).R inclusive, differentiation can reduce 
the accuracy by one degree. We therefore proceed 
as follows. According to (12) 

(18) 

U (r, Oi) in the region R1 < r < R2 is therefore ex
pressed in terms of e-w, ei) and., (n, e), which in 
turn according to (14) depend on the behavior of 
U (r, Oi) for R 1 < r < R2 • Therefore by inserting ( 16) 
and (13) in (14) we obtain an equation for e- and q. 

In the next section it will be shown that the ex
citation amplitude can be expressed simply in terms 
of e- and q. The equations for the latter are 

~ (Q, 6;) = F(1) (0, fl;) oc1 (&) + F(2) (Q, Oi) oc2 (&), (19) 

"'J (Q, 0;) = p<l) (Q, fl;) ~1 (&) + p<2l (0, Oi) ~2 (&), 

oc1,2(&) = ~Vdr,&)<pl.2(r,&)dr, 

~1.2 (-9) = ~ V1 (r, 3-) <?1.2 (r, &) (r- R 1) dr. (20) 

For simple potentials V1 (r, &) Eq. (15) can eas
ily be solved; therefore we can assume that 
<p 1 (r, -9), <p2 (r, &) and thus oc1. 2 (&), ~1 ,2 (&) are 

known. The coefficients in (19) are thus determined 
and our problem is now the solution of the latter. 

The pair of integral equations (19) can conven
iently he converted into a pair of equations for the 
coefficients of the expansions. of e-<n. ei) and 

q (11, Oi) in terms of the functions Yzm (D) and 

D~x(Oi), or more precisely for the quantities 

e-h l; Oolo and T/h l; Oolo defined by 

C~M ;lm are the Clebsch-Gordan coefficients. 
Inserting (21) into (19) we obtain 

(21) 

= ~ [(21 + 1) (21' + 1) (2Q + 1) (2Q' + 1)]'1• 
:1.. 

X C~g; l'oC~0><; Q'->< W (ll'QQ'; IJ) (-1 )1-" ~ [cxf') 

+ kQ'Xl'OC~J..)]; 
h = h (kQR 1); hz = hz (kqR1); 

(Dz = h;/h1, Xz = i~Jiz; 

W (abed; ef) is the Racah coefficient; 

1t 

cxi~J = ~ <X1.2 (&) P:~.. (cos&) sin &d&, 
0 

(23) 

(24) 

--r r 
and KQl;Oolo differs from KQl;Qolo through there-
placement of <X1.2 (&) by ~1.2 (&). 

If instead of (22) we introduce shl;Qolo as 
defined by 
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(25) 

then considering that 1/ j1 h1 = x1 - <1>1 we obtain 

I 0 " - kQ (Xt - <Dz) ~Ql; Q,t, = QQ/'tt, 

~~I; Q,l, =- (k/iz,hz,) ~ Kqz; Q't'~~'l'; Q,t,, 
Q'l' 

"'~z; Q,t, =- (kfiz.ht,) ~ Kbz; Q't'~b'l'; Q,t,· (27) 
Q'l' 

In the next section the excitation amplitude will 
he expressed directly in terms of (; therefore we 
shall consider only (26). From the latter it follows 

that the C s are slightly dependent on the energy. 
Indeed since by virtue of the joinipg conditions 
kzc "'k' is slightly energy dependent the same 
true for k ( Xz - <1>1) "' k '. Similarly 

'I --1 I t 
KQt;·Q,l, + kQ<DzKQt; Q,l, ~ KQt; Q,t, ~cons . 

The complexity of the equations depends on how 
many of the K~l;Q'z' are non-vanishing for given Q 
and l (on the number of interconnections). According 
to (23) this depends on how many coefficients a~~2) 
must he taken into account when the IX1.2 (&)are ex
panded in Legendre polynomials. 

In the majority of cases which are of practical 
interest this number is small and a numerical solu
tion can he obtained. In many practical cases (see 
Sec. 4) the nondiagonal elements in (26) are small 
compared with the diagonal elements. This equation 
can then easily he solved by perturbation theory 
with the result 

e -- [k <· - <D ) + K1 + k <~> K-1 J-1 · Q,l,;Q,I,- Xt, I, Q,l,; Q,l, Q, l, Q,I,; Q,l, ' 

rl 
"Ql;Q,t,= 

This solution is unacceptable if any of the diago
nal elements 

is smaller than any of the nondiagonal elements, in 
spite of the fact that in general the nondiagonal 
elements are considerably smaller than the diagonal 
elements. But the equations can easily he corrected 
in this case. For this purpose we must in the equa
tion containing this diagonal element retain the non
diagonal terms in the first approximation and append 
equations for the quantities (~'liQolo which appear 

in these terms. In the nondiagonal elements it is 
only necessary to retain terms containing (~l;Qolo 
and ( 1Q l ·Q 1 By solving these equations we ob-

o o. 0 0• l 
tain the corrected value of (Ql;Qolo" We then obtain 

instead of (28) expressions in which c~ l is re
placed by 

(28) 

A general solution of (26) can also he obtained in 
the form of continuous fractions, incorporating the 
corrections in convenient form. 

3. CALCULATION OF THE EXCITATION 
CROSS SECTION OF ROTATIONAL STATES 

The amplitude of a nuclear transition to a state 
with angular momentum Q and projection M, with 
simultaneous scattering of the neutron into the solid 
angle ilk can he written as 

Q 
1 \ ( )* ~Q 

{QA1 (QkQ) = -- 41t.} ~kQ (r) DMx (6i) V1 (r, &) 

XU(r,6i)drdQdfJ; (29) 

~k"Q> (r) = t ~ i 1Y tm (Q) Y;m (QkQ) t (kQr) . 
Q lm 

Expanding ljl~-) (r) in powers of kQ (r-R1 ) and 
Q 

retaining the first two terms, inserting {21) and (27) 
into (30) and using the equality 
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~ (Kbl; Q'l' + kQ<DzRbz; Q'l') cb'l'; Q,l, + kQ (xz - CDz)] Kbz: Q'l'cb'l'; Q,l, 
Q1 l 1 Q'l' 

= - aQQ,au.- (kQ/ izhz) [cbz; Q,z.-] Kbz; Q'l'cb'z'; Q,z.], 
Q'l' 

we obtain 

{QM (.Q) = 2;r:'lz] 
ll.J 

(30) 

1 rl "'Kl rl f Ql; Q,l, = '-Ql; Q,1,- ,L,j Ql; Q'l''-Q'l'; Q,1,· (31) 
Q'l' 

With the use of (30) we easily calculate the excitation cross section 

dcrQ (Q)jdQ = [kQ/(2Qo + 1) k] S I {QM (Q) 12 

M.M, 

N (QQ0ll 0l'l~JJ'n) P n(cos -&); 

(32) 

N(QQ0ll 0l'l~Jl'n)= (2 /--f;~~~~~+l) [(2/ + 1)(2/' + 1)(210 + 1)(21~+ 1)]'1. 

x (-1) 1'+1:-Q-Q,C?g: zroCz,0o; !',0 W (ll'Jl'; nQ) lF (l0l~Jl'; nQ). 

Following integration over the angles the result is considerably simplified and the total excitation 
cross section becomes 

Jhe {~l;Qolo like the '~l;Qolo are only slightly 

dependent on energy, so that the energy dependence 

of the cross section is determined mainly by the 
1 h1 h10 r 2 factors, each of which is the product of 
the penetrabilities of the centrifugal barrier for an 
incident neutron with angular momentum l0 and a 
scattered neutron with angular momentum l. 

Since these factors decrease rapidly as l0 and l 
increase, only a few terms of the summation in (27) 
are actually important. For example, when the first 
rotational level of an even-even nucleus (Q0 = 0, 
Q = 2) is excited by l-2 Mev neutrons the three im
portant terms of the summation in (33) are those for 
l = 0, l0 = 2; l = l, l0 = l; l = 2, l 0 = 0. Eq. (33) is 
considerably simplified when we consider excitation 
near the threshold (ko -> 0). In this case I h1 1· 2 -> o1 
and 

(34) 

(33) 

\\'hen we consider excitation of the first rota
tional level, in most cases kR « l and the sum in 
(34) is reduced to a single term: 

_ ~ !..9___ 2Q + 1 (kR1l2(Q-Q,) o 12 
crQ- 4 " k 2Q 0 +1 [\2Q-2Q 0 -i)!!plfQo;Q,Q-Q,I · 

(35) 

The formulae derived enable us to make a rough 
estimate of the magnitude of the excitation cross 
section without detailed calculation. The { 10 l· Q l 

1 , o o 
like th~ 'Ql;Qolo have an average magnitude "' l/k'. 
Assummg 

f&1; Q,1, ~ f/k', k' = l ,4 ·1013 cm-1 , 

we obtain for the excitation cross section of the 
first rotational level of an even-even nucleus near 
the threshold 
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4. AN ELLIPSOIDAL SQUARE WELL MODEL 

We shall consider in this section a square well of ellipsoidal shape; we shall assume 

V () _ {-k'2 (1 + i~) r<R1 
0 r - 0 r>RI 

V (r .S) = {- k'2 (1 + i~) R1 <r<R1 + ARcos2 & 
1 ' 0 r < R1 ; r > R1 + D..R cos2 &. 

Let us consider a prolate nucleus. It was shown 
in Hef. 1 that g can assumed to be 0.03. Absorption 
in a layer of thickness A R is determined by the 
magnitude of k' AR g, which is small when k'A R'"" l. 
The assumptions already made give k' AR'"" 1 so 
that we shall neglect k' A R g compared with l. 

Subject to this condition, it follows (15) and (17) 
that 

Furthermore, in accordance with (20) 

rx1 (&) = - k' sin (x cos2 &); 

rx2 (&) =- 1 +cos (xcos2 &); 

~1 (&) = - x cos2 & sin (x cos2 &) - rx2 ~&); 

(36) 

(38) 

cpt(r, &) = cosk' (r- R 1), 

cp2 (r, &) =sink' (r- R 1 )jk, 

R1 <r<R1 + D..Rcos2 &. 

(37) 

Inserting these expressions in (24) we obtain 

ai"-~ and J3i"-~ as integrals which are expressed 
si~ply in ter'ms of Fresnel integrals. After calcu
lating these integrals we obtain, for example 

(O)- 0 62k'· 01:1 --, • 

(2)- 0 23k'· rx1 -- , • 

rxi4> = -0,002k'; 

(ij)-- 1 k'· 
(Xl - , 

(2)__ 0 31 k'· rx.I -- , , 

,(o)-- 0 2· llw2 - , , 

rx~2) =- 0,1; 

for x = 1: 

~io> =- 0,16; 
A<2>- -0 I· t"l - , , 

rx~4> =- 0,006; ~i4> =- 0,1; 
for x = 2: 

(O) 0 34· (.l(O) ---0 2· 
cx.2 = - ' ' t'l - , ' 

(4)-- 0 16k'· (Xl - , • 

rx~2> = -0,18; ~12> = -0,09; 

rx~4> = - 0,03; ~14> = - 0,11; 

O(fib) 
8 

5 

4 

2 

I 

/ 

.---~ 
~ v 

.,......... / 

~~O) =- 0,09 1/k'; 

~~2) = - 0,02 ljk'; 

~~4) = 0,048 ljk'; 

~~O) = - 0,23 1/k'; 

~~2) = 0,06 1/k'; 

~~4 ) = 0,045 ljk'. 

--

O,t f!J O,J 0,7 fl,9 ~~ tJ 1,5 ~7 ~9 2) 
E, Mev 

Energy dependence of the excitation cross section of 
the .first rotational level of an even-even nucleus 

(39) 

(40) 

Inserting (39) or (40) in (23) and (26) we see read
ily that for these values of ai"-~ and J3i"-~ the non
diagonal elements in (26) are ~onsiderab~y smaller 
than the diagonal elements, so that the formulas 

(28) can be used for the (~l;Qolo" Exceptions are 

certain values of R1 , i.e., of the mass number A, 
for which some diagonal element is unusually 
small. For such values of A the equations must be 
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solved more exactly. For the values k'R 1 = 11.2; 
k' !1R = 2 (!1R/R "'0.2; Arv 190) and using the val
ues of a\"~ and~\"~ from (40) we calculated first 

(~l;Olo (w'ith (28) aPplying in this case) and then 

r;ol, Olo for the excitati'on of the first rotational 

level of an even-even nucleus with 0.1 Mev excita
tion energy. 

As has already been indicated, for this case the 
three important terms in (33) are those with: g 2;oo, 
g,12 , and go; w The figure shows the result of 

substituting the values of these quantities in (27). 

The differential and the total elastic scattering 
cross section a se differ from (32) and (33) respec
tively through the replacement of f 1Ql·Q l by the 

• 0 0 

expression in the square brackets in (41). The 
total cross section can be calculated by using (41) 
and the optical theorem: 

(4-rr:jk) Im fQ,M, (0) = cr = crse + crc, (42) 

where fQoMo {0) is the forward scattering amplitude. 

Averaging foaM 0 (0) over the values of M0 we obtain 

_ 47t "'""' 2/ + 1 [ 1 (h;, ) -2 I ] 
cr - k .LJ 2Q 0 + 1 Im 2ik f!;.- I + ht, fQ,l,:Q,l, 

/,l, 0 

At low energies (kR) « 1 this expression 
becomes 

(43) 

cr = 47t (R~ -2Rl Re f8:o: Q,o) + ~7t Im f8:o: Q,o· (44) 

It was shown in Ref. 1 that at low energies there 
exists a simple relation between the total scattering 
cross section and the ratio of the average level 
width of a compound nucleus to the average level 
spacing: 

(45) 

Hence 

r 2 k I fQ' D =-:;:; m Q,o;Q,o· (46) 

Feshbach, Porter and \\eisskopf compared the 

5. EFFECT OF NUCLEAR DEFORMATION 
ON THE TOTAL NEUTRON SCATTERING 

CROSS SECTION 

The existence of deformation and rotational levels 
in nuclei will affect both the elastic cross section 
and the total scattering cross section. Formulae 
for these quantities are easily obtained by using 
the results of the preceding sections. 

For the elastic scattering amplitude we easily 
obtain instead of (30) 

(41) 

value of I'/V which was obtained experimentally 
with the value that was calculated on an optical 
model with a spherically symmetrical square poten
tial. A marked deviation was found in the region 
A "' 150-160. The theoretical curve shows a sharp 
peak in this region, whereas the experimental data 
do not reveal this peak. Following Bohr and 
Mottelson these authors state that the discrepancy 
results from the fact that nuclei of such mass num
bers are highly deformed. The matter can investi
gated by using (46). We are interested in the posi
tion of the maximum of {~0 • 00 • When {~0 • 00 is cal
culated by using (28), (31) and (40) we' find that the 
maximum is only slightly shifted by comparison 
with a spherically symmetrical potential. But (28) 
cannot be used near the maximum because at the 
maximum the diagonal element of (26) 

is extreme! y small. When the sol uti on of (28) is 
corrected as shown in Sec. 2 the maximum shows a 
greater shift. Thus fork' !1R "' 2, it is shifted for
ward A "' 175. This in itself is insufficient to ex
plain the discrepancy. It must be noted, however, 
that the magnitude of the deformation varies strong
ly but not monotonically with A. The existence of 
a deformation in the region A "' 150- 160 transfers 
the maximum to another region where the deforma
tion is either much greater or much smaller. Con
sequently, the maximum may either be nonexistent 
or much less steep. 

In conclusion I wish to express my deep appre-
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ciation to K. A. Ter-Martirosian for suggesting the 
problem and for his assistance. 
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The functional-derivative technique is used to investigate the annihilation (or production) 
of two interacting particles which may also exist in a bound state. Covariant equations have 
been found for the Green function (probability amplitude) which describes the annihilation of 
an electron and a positron into two quanta as well as for the Green function of the reverse 
process. The equations thus obtained have been used to solve the problem of interaction be
tween the electron and positron during pair production (or annihilation) with account of radia
tive corrections. 

RELATIVISTICALLY invariant equations for 
bound states were obtained by various au-

thors l-S. Not enough attention, however, was paid 
to equations that take into account a possible 
annihilation of particles. In the present work the 
functional-derivative technique is applied to the so
lution of the problem concerning the annihilation 
(or production) of two interacting particles which 
rnay also exist in a bound state. \\hile up to now 
functional equations were derived for the probabil
ity amplitudes (Green functions) describing transi
tions not accompanied by any change in the number 
of particles, in the present case functional equa
tions have been set up for the probability amplitudes 
(Green functions) describing the annihilation or pro
duction of particles. The resulting equations are, 
therefore, of a different form. Starting with these 
equations, it is easy to obtain the wave equation of 
positronium, the possible annihilation of the elec
tron and positron being taken into the account 6 • 

Such generalization of the method of functional de
rivatives to problems involving a change in the 
number of particles during the studied process en
ables us to calculate with any desired accuracy 
the probability of a two-photon (and in general, 

n-photon) annihilation of particles existing in a 

bound state. The results of previous works 7- 9 

dealing with the annihilation of two interacting par
ticles in the S and P states are essentially repro
duced if we limit ourselves to the first non-vanish
ing approximation. The contribution of Coulomb 
interaction in pair production is also accounted 10• 

The proposed method, however, makes it also pos
sible to find the radiative corrections for the above 
processes (cf., Hef. 11 and 12). The investigation 
of radiative corrections for the probability of pho
toproduction and annihilation of positronium con
firms the results of Ref. 13 with respect to the 
infra-red divergence in bound states of the parti
cles. 

1. DERIVATION OF THE EQUATION FOR THE 
GREEN FUNCTION OF TWO PARTICLES 

ANNIHILATING INTO TWO QUANTA 

The Green function G2 (x1 x 2 , ~e) describing the 
transmutation of two photons into an electron-posi
tron pair (and the two-photon annihilation of the 
particles as well) is defined, according to Ref. 14, 
in the following way: 


