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The radiation emitted by an element of volume of an anisotropic medium is examined 
on the basis of the electrodynamic theory of thermal radiation. A generalization of 
Kirchhoff's law is given. The thermal radiation from continuously varying magnetoac
tive media is considered. The case of weak gyrotropy is considered in some detail. 

1. INTRODUCTION 

KIRCHHOFF'S LAWS, which constitute the basis 
of the classical theory of thermal radiation, 

were established for an isotropic medium. Attempts 
to apply these laws directly to an anisotropic me
dium* encounter certain difficulties due mainly to 
the birefringent properties of such a medium. How
ever, thermal radiation from anisotropic media has 
lately acquired practical importance-principally in 
connection with the developmep.t of radioastronomy. 
By way of example one may cite problems such as 
the role of thermal radiation (at radio frequencies) 
from the sun's corona in the general magnetic field 
of the sunl-3, or radiation from sunspots. Another 
example, which concerns apparatus by itself, is 
that of the thermal emission from the ferrite used in 
the wave guides of modem instruments. 

This paper formulates the problem of the thermal 
radiation of an anisotropic medium and solves that 
problem from the point of view of the electrodynamic 
theory of electric field fluctuations and thermal ra
diation as evolved by Rytov4. According to the bas
ic concept of this theory, thermal fluctuations of the 
electric field in a medium may be described as the 
result of action by several extraneous random fields 
(or currents). In the same way these fields are also 
used to describe the random (thermal) radiation 
from each volume element of the medium. 

In order to compute statistical averages of the 
energy values (which are quadratic in the extrane
ous field) one need know only the statistical char
acteristic of the extraneous random field, i.e., the 
correlation matrix of the field components. The 
form of this matrix has been determined by Rytov4 

for an isotropic medium. Recently L. D. Landau 
and E. M. Lifshitz, in reporting on the papers by 

*Under the meaning of "anisotropic media" we include 
both optically inactive and active (gyrotropic) crystals. 
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Callen et al.s-s, have generalized the form of this 

matrix to media with arbitrary anisotropy*. In this 
case, when the medium experiences only electrical 
losses, the correlation matrix of extraneous random 
currents j o.(r) 

= C"'fl o (r- r'), (l.l) 

where 1i is Planck's constant divided by 2rr; 9=-kT 
the temperature in energy units; and fa/3 is the di

electric permittivity tensor for the medium**. 
Thermal radiation from a plasma situated in a 

constant magnetic field (magnetoactive medium***) 
is of practic:;al importance. It is a medium of this 
type that we shall have in mind henceforth in this 
paper.' Absorption in such a medium is caused, as 
is known, by collisions, ordinarily with v/w« 1 
where v is the collision frequency and w is the 
wave frequency. The smallness of v/w implies the 
smallness of the absorption coefficient for an or
dinary wave throughout all space available to it 
(see, for example, Ref. 11). In this case the maxi
mum absorption occurs in the region of reflection, 
i.e., where the refractive index is nearly zero. 

The nature of the absorption coefficient for an 
extraordinary wave is more complicated on account 
of resonance absorption. The resonance is the 
strongest when the wave travels along the maghetic 
field and when w = wH, wH being the gyro
frequency (= eH/2mc) of the plasma. The width of 

*These results have not yet been published. I wish to 
thank the authors for making their manuscript available 
to me. 

**We point out that Levin9 and the author 10 have used 
Eq. ( l.l) before but without thorough substantiation. 

***From a phenomenological point of view, ferrites lo
cated in a magnetic field can be assigned to this same 
type of category. 
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the resonance frequency hand, in which the absorp
tion is large, is on the order of v. Outside of this 
comparatively narrow hand, i.e., where 

leu- wH I» v, the absorption coefficient for the 
extraordinary wave then becomes of the same or
der of magnitude as in the case of an ordinary wave, 
v/w. The spatial distribution of the absorption co
efficient is the same as for an ordinary wave, i.e., 
with its maximum in the reflection area. 

Therefore, if one disregards the resonance region 
that exists for longitudinal propagation, absorption 
in true magnetoactive media may he considered 
small. This is the principal argument in favor of 
the assumption made below that the radiating me
dium* is a weak absorber. 

The subjects analyzed below have been examined 
in more detail in the author's dissertation 10. 

2. INTENSITY OF THERMAL RADIATION 

FROM A VOLUME ELEMENT 

OF A MAGNETOACTIVE MEDIUM 

Let us examine how a volume element of a mag
netoactive medium radiates, i.e., how one must 
g~;Jneralize Kirchhoff s law, 

(2.1) 

where 1"/w andaw are respectively the emission and 
absorption coefficients of an isotropic medium, and 
I w is the intensity of the equilibrium thermal radia
tion in the given absorbing medium. As has been 
noted before4, the concepts of equilibrium intensity 
and emission coefficient in an absorbing medium 
have definite meanings only when the absorption is 
so small that it is possible to disregard terms of the 
second order so far as losses are concerned. In this 
case Clausius' law is fulfilled 

fw=fccon2 , (2.2) 

*In actuality, nearly longitudinal wave propagation may 
be found, for instance, in sun spots. Here, however, no 
resonance region is in fact observed because of the spe
cial nature of the inhomogeneity of the solar atmosphere 
whereby an increase in the radius p causes a monotonic 
decrease in both the electron concentration N(p) and mag
netic field intensity H0 (p). The result is that extraordi
nary waves, whether they are generated by an element in 
the medium at resonance frequencies (/w- wH!~v),or 
pass during emergence from the medium through a region 
of resonance absorption (Wf.J decreases with increasing 
layer height) are unable to emerge outside 12. 

where /0 wis the intensity of the equilibrium radia
tion in vacuum, and n is the index of refraction for 
a transparent medium. 

In the case of an anisotropic medium the problem 
is complicated first because two types of waves 
are propagated and secondly because the radiation 
intensity must depend on the angle formed by the 
direction of propagation and the axis of symmetry 
of the medium. Therefore, the generalized law (2.1) 
must specify both the distribution of the radiated 
energy for the two possible types of waves (polari
zations) and the mentioned angular dependence. 

Let us first write the components of the tensor 
C af3• which enters into the correlation matrix (1.1) 
of the extraneous random currents, for the case of 
a magnetoactive medium. If the magnetic field is 
directed along the Z axis, the tensor Eik is written 
as (see, for example Ref. 11, p. 326): 

s -ig 0 
ig s 0 
0 0 'YJ 

(2.3) 

When there is absorption, the quantities 8, 11 and g 
are, in general, complex. The explicit dependence 
of the components Eik on the parameters of the 
plasma do not concern us here. 

Substituting (2.3) in (1.1) we obtain 

C C 1iw2 1iw c:* - e: 
11 = 22 = 87t2 coth 2(-1 • -;rr- , 

_ 1iw2 1iw 1)* -1) 
C33 - S1t2 coth 28 · -;rr-, 

(2.4) 

We shall assume a weakly absorbing medium and 
therefore disregard terms of second order (i.e., 
terms ""C~13). Then when the emission coefficient 
is computed, the medium external to the radiating 
volume element dV can generally be treated as 
transparent. 

The emission coefficient characterizes that por
tion of the total flow of energy from an element dV 
which diminishes only according to the exponential 
law as it travels away from the element, i.e., that 
portion which is due to the wave field. However, 
from our point of view, the volume element dV is a 
dipole with a random moment of dp = jdV /iw where 
j represents the density of the random extraneous 

currents. The wave field of the dipole in a magneto-



THERMAL RADIATION FROM AN ANISOTROPIC MEDIUM 667 

active medium was previously found to be [see 
Bunk in 13, Eq. (5. 3)]: 

E~i) (r) 

= 4;;k6 A (il (&) (krfl exp {ikr~(il (&)}a~~(&,?) Pk• 

(2.5) 

where Pk represents the components of the dipole 
moment and where the A(i), t{!(iJ, a~~ are determined 

by the components 8;k and thus depend on polar an
gle ()(measured from the axis of symmetry, i.e., 
from the direction of the external magnetic field) 
and on the azimuth angle cp of the radius vector r, 
as well as being determined by the index of refrac
tion ni and its first and second derivatives [Bunkin 13, 
Eq. (5.4) and (5.5)]. The index i refers to one of the 
two possible types of waves (i = 1 for an ordinary 
wave, i = 2 for an extraordinary one). 

From Eq. (2.5) for the dipole field and correlation 
matrix (1.1) and (2.4) for the current j, one can com
pute the emission coefficient 7/c.J for the medium un
der discussion. The following result is obtained 

(2.6) 

where 7]~) is the emission coefficient fori-type 
waves (the natural emission coefficient) and 7)(2) 

is the "interference" emission of thermal radiation. 
We are omitting the equations for the dependence of 
these coefficients on the values Aril, a~~ and t{!(iJ, 

since our main interest is not in these equations 
but rather in presenting T/c.J in such a form as to gen
eralize Kirchhoff's law, Eq. (2.1). In this connec
tion there arises a difficulty due to the presence of 
the interference emission .,< 12). However, as de-

c.J 
tailed examination reveals, the interference term 
proves quite inconsequential in practical problems. 
In clarifying this further we shall limit ourselves to 
a few remarks only. 

The interference term describes the "fine struc
ture" of the thermal radiation field. The difference 
in the propagation velocities of the ordinary and 
extraordinary waves causes the three-dimensional 
oscillatory character of the interference emission 
(see F. V. Bunkin10) thus 

~~2> = g2 B (&, {U) cos {kr [~(ll (&, {U) (2 _7) 

- ~(2l (&, {U)J + 'f (B, {!))}, 

We have indicated an explicit dependem:e on fre-

quency (l), since we allow for the presence of dis
persion, i.e., the dependence of 8ik on w. As is 
evident the emission coefficient T/(12) is of second 

c.J 

order in the gyrotropy parameter g. When () = 0 and 
() = TT/2, the "amplitude" B((), w) becomes zero, i.e., 
there is no interference emission in directions along 
and across the external magnetic field. 

Because of the oscillatory dependence of T/~2) on 
r and e, this interference between the ordinary and 
extraordinary waves is totally lost when the inves
tigated radiation is only slightly nonmonochromatic 
(slightly, that is, relative to the bandwidth of the 
receiver). 

We note that the presence of interference between 
ordinary and extraordinary waves in thermal emis
sion is precisely characteristic of a magnetoactive 
(gyrotropic in the general case) medium. In inac
tive crystals, such as uniaxial crystals, for which 
g = 0, there is no interference. 

As for the natural emission of thermal radiation, 
the problem, as has been stated, is to write 7){iJ{()), 

c.J 

expressed in terms of A(il(()), t{/il(()), and aw(e, cp), 

in such a form as to obtain a generalized Kirchhoff s 
law, i.e., as 

~(i) (u) _ IX( i) /(i) 
•jco V - w w • (i = 1,2). (2.8) 

It is natural to take f~) as the intensities of equi
librium thermal radiation in a transparent magneto
active medium, in which case 1r:,J depends on the 
parameters 8, Tf, g and angle (), and is given by 

Rytov4, page 150*. 
The following expression is then obtained for 

the coefficients a(i) = a(il(()) 
c.J c.J ' 

Here ni(() and Kif,) are related in the usual way 
to the real and imaginary parts of the complex index 
of refraction n;(~")[1-iKi(t)] for ani-type plane 
wave propagating at angle t to the z axis (terms 

*Rytov derives equations for equilibrium intensities 
(i) 

I c.J due to a beam of plane waves whose normals form an 

angle ()with the z-axis. The energy flow vector of this 
beam forms a different angle, which Rytov designates by 
t. It must be borne in mind that our notation is different, 
we use t to represent the angle between the normal and 
the z-axis and e to represent the angle of the energy flow. 
We find it expedient to express the intensity J(i) in terms 
of the angle e. c.J 
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"'K ~ are neglected). The angle t Oi = t0 i (0) is 
determined from the equation 

(2.10) 

and is equal to the angle between the wave normal 
of a plane wave and the direction of the magnetic 
field, where the energy flow vector of this wave 
makes an angle() with the magnetic field 11 • The 

components C a.B of the correlation tensor no longer 
enter in Eq. (2.9) because they are expressed in 

terms of ni(toi) and K i<toi). 
For an isot~pic medium, toi = (), n1 = n2 , K 1 =K2 

and are independent of direction, so that Eq. (2.9) 
now becomes the usual one for the absorption coef
ficient of an isotropic medium aw = '2knK. Since in 

this case /(~)=/~1) = %n2low (see Rytov4, p. 150), 
Eq. (2.8) reduces to Eq. (2.1). Thus, Eq. (2.8) and 
Eq. (2.9) are actually rational generalizations of 

Kirchhofrs law and the concept of absorption coef
ficient. 

As has been mentioned, Eq. (2.8) is the solution 
to the problem of the division of the energy radiated 
by a point thermal source between the two possible 
types of waves, and this in turn makes it possible 
for one to determine the degree of polarization of 
this radiation (see next Section). 

Let us pause briefly to examine the results of 
some numerical computations. In solving practical 
problems it is convenient to express the components 
of the tensor e;ik in terms of the plasma parameters 
h, v, and qll. These are determined in the follow
ing manner,* 

(2.11) 

where WH and wo are respectively the gyromagnetic 
and critical frequencies of the plasma and v is the 
collision frequency. The requirement of small ab
sorption means the one must eliminate that frequen
cy region w, which satisfies the condition 11-h 1.$ q. 
The expression for the absorption coefficient 

a~J(()) is given by [with ni = ni<toi), 

k (1-n2F 
cx<il (6) = q ·- cos (~oi - 6) ' 

"' ni v (1-v) 
(2.12) 

2 (1- v)2 (v -1+ nD + h2vnr sin 2 ~0 . 
X ' 

2 (1- v) (v -l + n7) + h2 (1- nD sin2 ~oi 

*Al'pert,et atll use the parameter u= h2 instead of h, 
and furthermore use s instead of q. 

The curves in the figure illustrate the dependence 
of the dimensionless quantity Tl~)(())/qklowon the 
angle ()when v = 0.4 and h2 = 0.3. Numerals I and 
II refer to the ordinary and the extraordinary types 
of radiation respectively; the straight dotted line 
represents the emission coefficient of an isotropic 
medium (v = 0.4, h = 0). 

~~~--~~~--~~~--~o 

0 10 zo JO 1/0 50 60 7/] BIJ 90 

It is obvious from the figure that the introduction 

of a magnetic field with WH ""0.55w increases the 
emissive power of each volume element of the plas
ma for extraordinary waves and decreases it for or
dinary waves for all directions of emission. The 
total emissive power (for both wave types) when 
the field is present exceeds the emissivity when 
the field is absent. For other values of h (i.e., 
for other frequencies with the same magnetic field) 
the ratio between (ry<,!;l + 77(~)) and.,.,<:;> the emission 
coefficient of an isotropic medium (h = 0) will, of 

course, be different, but invariably* 

( 2.13) 

Thus, when the magnetic field is applied, there is 
an increase in the output of thermal energy by each 
volume element of the plasma. Of course, this does 
not mean that there must of necessity be an increase 
also in the emissive power of the total volume of 
the plasma, for as the emission coefficient grows 
larger, reabsorption of the energy also increases 
(just as an increase in the resonance radiation of 
atoms is accompanied by an increase in their ab
sorption). The general considerations indicating 

*Further on it will be shown that when his small, 

'l~> (6) + 'l~>(e) = 'l~>. 
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this circumstance were once set forth in connection 
with the discussion of the increase in the radiation 
of sun spots 14• 15• 

3. POLARIZATION OF THE THERMAL 

RADIATION FROM A VOLUME ELEMENT 

In the study of the thennal radiation of anisotro
pic media, questions concerned with polarization 
are of special interest in addition to the questions 
of radiation intensity. In general only partial polar
ization occurs, i.e., the flow of radiation at any 
one point is the sum of the unpolarized (randomly 
polarized) and completely polarized (in general, el
liptically polarized) components. The completely 
polarized portion of the flow is, of course, also 
random, but the field here fluctuates in such a way 
that the amplitude ratio and the difference in the 
phases of the two orthogonal projections remain 
constant. 

In this Section we shall determine the degree of 
polarization of the thermal radiation emitted by a 
point source (volume element of the medium), i.e., 
the ratio p(O) of the intensity in a given direction 
of the totally polarized component to the total in
tensity. Moreover, we shall determine the degree 
of ellipticity (the ratio of semiaxes a/b = tanf3(0) 
of the polarization ellipse of the electric field) and 
the position of the polarization plane, i.e., the an
gle of inclination X (0) of the major axis of the el
lipse to a certain direction. These questions can 
be most simply solved by using Stokes' parameters 
Q, U, and V which must be expressed in terms of 
the components of the tensor Ca.f3*· In this case 
we have for ,8(0) and X (e) 

sin2{3 = VV Q2 + U 2 + V2 , tan2x = U JQ, (3.1) 

*If 

~1 =~~sin (wt- s1), 

are two mutually perpendicular components of the electric 
field, then by definition the Stokes parameters are 16-18 

• Q = (1'(0))~ -(~(0))2 u -- ?1'(0) 1'(0) cos .. 
~ 1 ~2 ' --·- .... ~ 1 t.;,2 o, 

V =; 2~ 1(o)~~o) sin ll, 3 = e:1 -e:2. 

Stokes introduced yet a fourth parameter I= (~~0))2 + (~~o))2• 
to determine the intensity in isotropic media, fn aniso
tropic media this parameter does not determine intensity 
and therefore is of no interest. 

where X is the angle formed by the major axis of 
the ellipse and the g1 axis. The double valuedness 
of these equations is eliminated by the following 
auxiliary condition: if of the two values for f3 the 
smaller in absolute magnitude is selected, then the 
sign of cos 2x should coincide with the sign of Q. 
The sign of f3 is understood to be counter-clockwise 
(from axis g1 .toward axis g2 ). 

Let us introduce an auxiliary Hermitian tensor 

(3.2) 

where E(r) represents the electric field. The deter
mination of Stokes' parameters [where one utilizes 
the definitions* and Eq. (3.2)] leads to a connec

tion between Q, U, V and P tk· If, for example, the 
polarization in plane (x, y) is of interest, we have 

(3.3) 

Returning to the question of the polarization of 
thermal radiation in a homogeneous medium, which 
is of interest to us, we make use of the representa
tion of the field E(r) by the extraneous current j(r) 
(see Bunkin13), 

Ei(r) = 4:k ~ Tik (r, r1) ik (rl) dV1. (3.4) 
v 

Substituting Eq. (3.4) into Eq. (3.2) and utilizing 
Eq. (l.l), we fi11d 

The additivity of components Pik is obviously a 
consequence of the incoherence of the radiation 
from separate volume elements of the medium. The 
tensor p tk(r, r1 )dV1 characterizes the radiation po
larization at point r due to the volume element dV10 

which is at point r10 and allows for both ordinary 
and extraordinary waves. Thus, in the general case 
we have 

P. - p(_l) -1- p(2) + p~12) 
,k- til. ' tk til.' (3.6) 

h 02 l · h · f F th w ere Pik 1st e mter erence term. or e same 
reasons as those given above in the discussion of 
the interference term in the energy flow, the tenn 
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p ~~)may be disregarded. The components of the 

tensor pW(i = 1, 2} are determined with the aid of 

Eq. (3.4). 

In the wave region which is, of course, the only 
one of interest, we obtain 

Pu> B<i> U> (6 ) u> (6 ) C ik = aia. , rp aR.f!. ,rp a.ra. 
(3.7) 

BUJ = (l67t2k8/c2p2) I A<iJ (6) l2,p =I r- r1l• (3.B) 

where the functions A ( il, a~~ are the same as in 

Eq. (2.5). 
By substituting Eq. (3.7) into Eq. (3.3) we estab

lish the relationship of the Stokes parameters, 
which relate to the radiation from a volume element 
with the components of the tensor Ca.f3. The ex
pressions thus obtained for the parameters Q(i)(()), 
ufil(fJ), and vfil(fJ), which depict the polarization 
of the field in a plane orthogonal to an arbitrary 
direction of emission, are rather cumbersome and 
are not given here. These expressions show that 
thermal radiation from a volume element in waves 
of every type will be completely polarized, and in 
general elliptically. However, it is a matter of 
practical importance to determine the state of po
larization of the total emission (i.e., the flow of 
ordinary and extraordinary waves, assuming, of 
course, that there is emission of both types of 
waves, i.e., that the refraction index at any given 
point be real for both waves). Since we disregard 
the interference term p ~If, then the Stokes param
eters Q, U, V for the total beam are 

Q = Q<l> + Q<2>, u = u<I> + u<2>, V= v<l>+ v<2>. 
(3.9) 

In this case the flux is only partly polarized. The 
degree of polarization p(O) can be evaluated by the 
equation 

6 _ Ill~> (6) -ll~> (6) I 

p ( ) - lJ~) (6) + lJ~) (6) 

I a~> (6) J~) (6)- a~> (6) J~l (6) I 
= a~l (6) J~l (6) +a~> (6) J~l (6) 

(3.10) 

In the case of weak gyrotropy, i.e., when h « 1, 
the approximate expression for Tl ~) (()), which was 
obtained in Section 5 of this article, yields a very 
simple equation for p(()), correct to terms "-' h 

(3.11) 

As an example, let us examine the case of longi
tudinal (0 == 0) thermal emission from a volume ele
ment. For the Stokes parameters we obtain 

V(il = + 4g2'1j2 (C11 + iC12) B(il, 
(3.12) 

Q<i> = u<il = o. 
Thus [see Eq. (3.1)] 

sin 2~<il = + 1, (3.13) 

i.e., as ll}'ight have been expected, longitudinal 
thermal emission from a point source is circularly 
polarized. The total flux is only partly polarized, 
naturally, though again circularly and with the same 
direction of rotation as for an extraordinary plane 
wave. The degree of polarization for this particular 
case is, 

-

p (0) 

1 n1 (1 - h)2 (n: + 1 - v)2- n2 (1 + h)2 (n~ + f - v)21 

n1 (1 - h)2 (n~ + 1 - v)2 + n2 (1 + h)2 (n~ + 1 - v)2 ' 

{3.14) 

n~ = l-vf(1 +h). (3.15) 

4. THE EQUATION FOR TRANSFER OF 
THERMAL RADIATION IN 

A MAGNETOACTIVE MEDIUM 

The problem of thermal radiation in inhomogene
ous media reduces, as is known, to solving the 
transfer equation; to write this equation one must 
know the emission and absorption coefficients of 
the medium. Since we have obtained these values 
for a magnetoactive medium, it is now easy for us 
to write the transfer equation. If j~) is the inten
sity of the i-type thermal radiation (i == 1, 2) in the 
direction () (() is the angle between the direction of 
interest and the magnetic field at the given point), 
then 

(dJ~l / da) + rx~> (6) J~> = 'Yj~> (6), (4.1) 

where du is the element of ray length, and a~J(e) 

and Tl~l(()) are respectively the absorption and emis
sion coefficients of the medium. 

The intensity of radiation emitted from the me
dium in a given direction is obtained from Eq. (4.1), 
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thus 
co 

J~l = ~ 'fj~) (6, a) e-"; (a) da, (4.2) 
0 

where 1: i (a) is the optical thickness, 
a 

't; (a)= ~ oc~> (6, a) da. (4.3) 
0 

The integration in Eq. (4.2) and Eq. (4.3) is to be 
performed along the ray under consideration. 

Thus the problem reduces to (as in the case of 
an isotropic medium) a computation of the trajectory 
of the ray. However, in contrast to the case of an 
isotropic medium, where it is sufficient to use the 
refraction law (Snell's law) to determine the trajec
tory of the ray, the corresponding computations in 
the present case require consideration of both the 
refraction law (whose form is considerably more 
complicated) and the relationship between the di
rections of the wave normal and the energy flow. 
The result is that even for a comparatively simple 
case of anisotropy (e.g., a plane inhomogeneous 
ionosphere stratum in a homogeneous magnetic 
field 19 -~) the computation of the trajectory of the 
ray necessitates cumbersome calculations and can 
be completed only by combining analytic and graph
ic methods. In the case of the sun, which is of 
practical interest, the ray trajectories have not, to 
our knowledge, been computed with allowance for 
the magnetic field (i.e., for the "anisotropic" sun). 

It is not out purpose here to compute the ray tra
jectories for any concrete problems, but to examine 
the particular, but practically important, case of 
weak gyrotropy, i.e., effects due to anisotropy 
which can be treated more or less as corrections 
to the solution for a corresponding isotropic me
dium. 

5. THE CASE OF WEAK GYROTROPY 

The condition for weak gyrotropy (L) H / (L) = h « 1 
is realized in the earth's ionosphere (where the 
magnetic field H0 "" 0.5 oersted) for wavelengths of 
a meter or less and on the sun-for the general mag
netic field (H0 "'50 oersted) and the field of small 
sun spots (H0 ,., 102 oersted)-for wavelengths from 
a decimeter to a centimeter (here h ~ 0.1). 

We shall find approximate expressions for the 
quantities that are of interest which are accurate to 
terms of the order of h. The general expression for 
the index of refraction for an ionized gas in a mag-

netic field11•19 reduces in this approximation to a 
simple equation, 

n~ = 1-v ± hv I cos .fl, 
t 

(5.1) 

where .f is the angle formed by the wave normal and 
the magnetic field. The quadratic term in h in the 
expansion of n~ is one order of magnitude smaller 
than the prece~ding term only when the angle satis
fies the following condition, 

sin ~·tan~ e. 2 (1- v). (5.2) 

When this condition is not fulfilled the anisotropy of 
the medium proves to be of order h2 , i.e., the medium 
is isotropic in the approximation discussed here 
( "'-' h) and consequently an analysis of the phenom
ena that interest us becomes superfluous. Eq. (5.2) 
obviously means that the directions of propagation 
must not be too close to the transverse direction.* 
Thus, when v = 0.4, the angle .f should not exceed 
about 56°. Henceforth we shall invariably assume 
Eq. (5.2) to he fulfilled. 

\\hen Eq. (5.1) holds, it is easy to produce the 
corresponding approximate expression for the angle 
xi <foi) = .fOi-0, as well. as for the absorption 
(;(il (())] and emission [n(t) (())] coefficients [the w 'tw 

exact expressions for these quantities are given by 
Eq. (2.8), (2.9) and (2.10) respectively]. Thus, 

_ vsine 
X; [~oi (6)] = + 2 (i _ v) h, (5.3) 

oc~l (6) = oc~l [ 1 + 2 ( 1 + + '1 v v) hI cos 61] , 
(5.4) 

"fj~l (6) = oc~> (6) I~l (6) 

=lf2 '1J~>[1+2(1 + 1/ 41 v Jhlcos61]· (5.5) 

Here 

oc~> = qkv /Vl- v, 

YJ<o> = oc<o> I<o> = IX<o> I (1 - v) 
(I) (I) (l) Cr.} 06l 

are the absorption and emission coefficients in the 
corresponding isotropic medium (h = 0). We note 
that the equilibrium intensities/~)(()) in the dis-

*It should be noted that Eq. (5.2) is not a condition of 
"quasilongitudinality" (Ref. 11). 
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cussed approximation are equal to just half of the 
equilibrium intensity in the corresponding isotropic 
medium, 

/~) (~) = 1/2 /~) + 0 (h2) 

= 1/2 (1- V) fow + 0 (h2), 

(5.6) 

where ! 0 c,)s the equilibrium intensity in a vacuum. 
Let us now compute by Eq. (4.2) and (4.3), ac

curate to terms of the order of h, the radiation inten
sities /(i) from an inhomogeneous magnetoactive w 
medium. 

Let the ray equation be given in parametric form, 

x = x (a, h), y = y (a, h), z = z (a, h), (5.7) 

i.e., the arclength a (0 <a <oo) is treated as a para
meter. Since the angle x. (,;io) between the wave 
normal and the energy flo'w vector is of order h, ac
cording to Eq. (5.3), the perturbation of the ray 
trajectory by the magnetic field is also of order h. 
This means that the expansion of x, y and z in 
powers of h is linear, 

X (a, h)= x0 (a)+ X1 (a) h +. · ·, (5.8) 

where x1 (a), in general, differs from zero. 
In our computations we shall allow for continuous 

changes in the properties of the medium by treating 
all the subsequent quantities as dependent on the 
coordinates only through 

~ = fLX, "fj = fLY• ( = [LZ, (5.9) 

where p. is a small parameter. The magnitude of p. 
is determined by consideration of the fact that the 
relative changes in all the quantities over a wave 
length must be on the order of p.. * We shall con
sider henceforth that 

v~h. (5.10) 

Substituting Eq. (5.4) in Eq. (4.3) and utilizing Eq. 
(5.8) to (5.10) we obtain the following expression 
for the optical thickness 

"=i (a)= "(o) (a)+~" (a), 
<J 

-c<o> (a) = ~ IX~I da, 
0 

(5.11) 

(5.12) 

*The region in which the transfer equation is valid 
coincides, as is known, with the region to which geo
metric optics apply. 

a 

~-c(a)=2~1X~>(l+ 1J, 1 v v)hlcos6jda,(5.13) 
0 

where the integration is along the· unperturbed ray 
x=x0 (a),y=y0 (a), z=z0 (a). 

An approximate expression for intensity is ob
tained by substituting Eq. (5.5) and (5.11) in Eq. 
(4.2) and employing Eq. (5.8)- (5.10). This gives 

<X> 

J~l = ~ "'l~) e--r(O) (a) da, 
G 

<X> 

~], = ~ "'l~>{2 (1 + Ij41 v v) 
0 

X hI COS 61- ~" (a)} e--r!O) (a) da, 

(5.14) 

(5.15) 

(5.16) 

again, as in Eq. (5.12) and (5.13), the integrals are 
taken along the unperturbed ray. 

On the basis of Eq. (5.14), the degree of polari
zation of thermal radiation from a magnetoactive 
medium in this approximation is, 

P = i J~>- 1~> I I (J~> + J~~>) =I ~J"' I I J~>. (5.17) 

The question of thermal radiation from the 
"anisotropic" sun was analyzed by Smerd 3 who cal
culated its total magnetic field assuming h « l. 
He made use of earlier unpublished theoretical 
equations that in some respects do not coincide 
with the results obtained here. Thus, our expres
sion for the correction to the optical depth ~ -r(a) 
[Eq. (5.13)] differs from the corresponding expres
sion in Smerd's paper by having the factor 

( 1 + 1/ 41 v v} Coincidence is obtained only if 

terms of the order of v2 (a~> "' v) are neglected, a 
procedure that is far from being always justified. 

The advantage of the approximate method out
lined here for solving the transfer equation is that 
it permits one to deal with only the unperturbed 
form of the ray. This is due to the assumption that 
p. :>;h. It can be shown that this advantage remains 
valid also for calculation up to terms on the order 
of hk, if it is assumed that p. ~ hk. 

In conclusion the author wishes to avail himself 
of the opportunity to express his deep gratitude to 

Prof. S. M. Rytov for suggesting this subject and 
for his constant help in the preparation of this 
paper. 



THERMAL RADIATION FROM AN ANISOTROPIC MEDIUM 673 

1 
D. F. Martyn, Proc. Roy. Soc. 193, 44 (1948). 

2 V. L. Ginzburg, Astr. Zhurnal 26, 84 (1949). 
3 S. F. Smerd, Austr. J. Sci. Res. 3, 34, 265 (1950). 
4 S. M. Rytov, Theory of Electrical Fluctuations and 

Thermal Emission, Moscow-Leningrad 1953. 
5 H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 

(1951). 
6 

H. B. Callen and R. F. Greene, Phys. Rev. 86, 702 
(1952). 

7 Callen, Barasch and Jackson, Phys. Rev. 88, 1382 
( 1952). 

8 
R. F. Greene and H. B. Callen, Phys. Rev. 88, 1387 

( 1952). 
9 M. L. Levin, Dokl. Akad. N auk SSSR 102, 53 (1955). 
1°F. V. Bunkin, Dissertation, Moscow, Physical lnst., 

Acad. of Sci. (1955). 

11 Al'pert, Ginzburg and Feiberg, Radiowave Propaga

tion, Moscow-Leningrad ( 1953). 
12M. Ryle, Proc. Roy. Soc. 195, 82 (1948). 
13 F. V. Bunkin, J. Exptl. Theoret. Phys. (U.S.S.R.) 

32, 338 (1957); Soviet Physics JETP 5, 277 (1957). 
14 V. L. Ginzburg, U sp. Fiz. N auk. 32, 26 0947). 
15G. G. Getmantsev, Usp. Fiz. Nauk 44, 527 (1951). 
16 G. G. Stokes, Trans. Cambr. Phil. Soc. 9, 339 

(1852). 
17 S. Chandrasekar, Radiative Transfer, (Russ. Trans!.). 

Ill ( 1953). 
18 G. V. Rosenderg, Usp. Fiz. Nauk 56, 77 (1955). 
19 Ia. L. Al'pert, lzv. Akad. Nauk SSSR, Fiz 12, 241 

(1948). 
20 J. Scott, Proc. lnst. Radio Engrs. 38, 1057 (1950). 

Translated by A. Skumanich 

178 

SOVIET PHYSICS JETP VOLUME 5, NUMBER 4 NOVEMBER, 1957 

On the Mechanism of Fission of Heavy Nuclei 

V. V. VLADIMIRSKII 

(Submitted to JETP editor March 16, 1956) 

J, ExptL Theoret, Phys, (U.S.S.R.) 32, 822-825 (April 1957) 

The effect of the state of individual nucleons on the shape of the nucleus prior to fis
sion is studied, It is shown that the presence of excess nucleons with large values of 
the angular momentum projection on the symmetry axis of the nucleus may lead to loss of 
stability of the nucleus with respect to asymmetric deformations in the saddle point, 
This facilitates the explanation of some of the experimental facts, 

OUR PRESENT IDEAS about the fission of heavy 

nuclei at low excitation, based on the liquid 

drop model\ are connected with the fact that, for a 

sufficient elongation of an incompressible drop, the 

sum of the Coulomb and of the surface energies at

tains a maximum equal to the fission threshold, 

further elongation of the drop being energetically 

favorable. It was shown by various authors 2 that, at 

the critical elongation, the nucleus retains its sta

bility with respect to asymmetric deformations. The 

energy of the nucleus expressed in terms of the de

formation parameters possesses therefore a saddle 

point at the critical elongation, the loss of stability 

depending only on the one deformation parameters 

that characterizes the elongation. The shape of the 

nucleus in the saddle point remains symmetric. 

The quantitative comparison of calculations based 

on the liquid drop model with experimental data en-

counters a number of difficulties. The theoretically 

predicted strong dependence of the fission threshold 

U"' U- xP on the parameter x"' Z 2/ A has not been 
confirmed experimentally 3 ' 4 • In fact, the threshold 

was found to he almost identical for a number of 

elements. Difficulties are also encountered in at

tempts to explain the observed asymmetry in the 

mass distribution of fission fragments. It has been 

shown in recent works 5 ' 6 that it possible to explain 

this asymmetry on the basis of the liquid drop mod

el. The authors indicate that upon further elonga

tion of the nucleus, after the saddle point has been 

passed, the stability with respect to asymmetric 

deformations is lost and there may he a fast in

crease in the asymmetry of the nucleus. It seems 

very probable that their estimate of the mean ratio 

of the masses of the fission fragments is correct. 

The calculations pertaining to the dynamics of 


