Letters to the Editor

Energy Dependence of the Effective Cross Section of Inelastic Scattering of Particles near the Threshold

G. F. Drukarev

Leningrad State University
(Submitted to JETP editor May 13, 1956;
resubmitted December 1, 1956)
J.Exptl. Theoret. Phys. (U.S.S.R.) 32, 601-603 (March, 1957)

AMETHOD is presented in the present paper for the investigation of the energy dependence of inelastic scattering near the threshold. As an illustration, let us consider a system A consisting of a fixed force center and a particle a bound to it. Let particle b fall on this system. We shall consider that a and b are different, in order to avoid difficulties connected with the Pauli principle (in the case of identical particles a and b, the results are not changed in principle, but the calculations are more complicated).
We are interested in the inelastic scattering of b, in which a undergoes a transition from a state with energy E_{0} to another state with energy E_{1}. Expanding the wave function of the system $A+b \Psi\left(r_{1} r_{2}\right)$ in the eigenfunctions ψ_{α} of system A

$$
\begin{equation*}
\Psi\left(\mathbf{r}_{1} \mathbf{r}_{2}\right)=\sum_{\alpha} \psi_{\alpha}\left(\mathbf{r}_{1}\right) F_{\alpha}\left(\mathbf{r}_{2}\right) \tag{1}
\end{equation*}
$$

we get for F_{α} the system of equations ${ }^{1}$

$$
\begin{equation*}
\Delta F_{\alpha}+k_{\alpha}^{2} F_{\alpha}=\sum_{\beta} V_{\alpha \beta} F_{\beta} \tag{2}
\end{equation*}
$$

with asymptotic behavior

$$
\begin{equation*}
F_{\alpha} \sim \exp \left(i \mathbf{k}_{\alpha} \mathbf{r}_{\alpha}\right) \delta_{\alpha 0}+q_{\alpha} r^{-1} \exp \left(i k_{\alpha} r\right) . \tag{3}
\end{equation*}
$$

We introduce the notation $\hbar^{2} k_{0}^{2} / 2 m_{b}$ for the energy of the particle before collision:

$$
\begin{gather*}
\hbar^{2} k_{\alpha}^{2} / 2 m_{b}=\hbar^{2} k_{0}^{2} / 2 m_{b}+\left(E_{0}-E_{\alpha}\right), \tag{4}\\
k_{0}^{2}=k_{\alpha}^{2}+k_{\alpha 0}^{2}, x_{\alpha}=k_{0}-k_{\alpha 0}=\left(k_{\alpha}^{2}+k_{\alpha 0}^{2}\right)^{1 / 2}-k_{x 0} . \tag{5}
\end{gather*}
$$

The effective cross section of the transition $0 \rightarrow a$ is related to the amplitude q_{α} by the equation:

$$
\begin{equation*}
\sigma_{0 \alpha}=\left(k_{\alpha} / k_{0}\right) \int\left|q_{\alpha}\right|^{2} d \Omega \tag{6}
\end{equation*}
$$

We shall consider the system (2) in an approximation in which we can separate the two equations for F_{0} and F_{1} and neglect the coupling of these equations with the other equations (regarding this approximation, see Refs. 1, 2).

We shall then have

$$
\begin{equation*}
\left(\Delta+k_{0}^{2}\right) F_{0}=V_{00} F_{0}+V_{01} F_{1},\left(\Delta \cdot+k_{1}^{2}\right) F_{1}=V_{11} F_{1}+V_{10} F_{0} . \tag{7}
\end{equation*}
$$

We limit ourselves to the simplest case of a transition between s states; moreover, we shall take into account only the s state of particle b which undergoes scattering. Then F_{1} and F_{2} will be spherically symmetric. Setting $F_{\alpha}=f_{\alpha} / r$, we get

$$
\begin{equation*}
d^{2} f_{\alpha} / d r^{2}+k_{\alpha}^{2} f_{\alpha}=\sum_{\beta=0}^{1} V_{\alpha \beta} f_{\beta}(\alpha=0 ; 1) . \tag{8}
\end{equation*}
$$

For large r,

$$
\begin{equation*}
f_{\alpha} \sim k_{\alpha}^{-1} \sin k_{\alpha} r \delta_{\alpha 0}+q_{\alpha} \exp i k_{\alpha} r . \tag{9}
\end{equation*}
$$

We can convert the system (8) with asymptotic conditions (9) to the integral equations

$$
\begin{gather*}
f_{\alpha}=c_{\alpha} \varphi_{\alpha}+\sum_{\beta=0}^{1} \int_{0}^{r} G_{\alpha \beta}(r, s) f_{\beta}(s) d s \quad(\alpha=0 ; 1), \tag{10}\\
G_{\alpha \beta}(r, s)=\frac{1}{k_{\alpha}} \sin k_{\alpha}(r-s) V_{\alpha \beta}(s) ; \varphi_{\alpha}=\frac{\sin k_{\alpha} r}{k_{\alpha}}, \\
c_{\alpha}=\delta_{\alpha 0}-\sum_{\beta=0}^{1} \int_{0}^{\infty} e^{i k_{\alpha} s} V_{\alpha \beta}(s) f_{\beta}(s) d s .
\end{gather*}
$$

For q_{a} we have

$$
\begin{equation*}
q_{\alpha}=-\frac{1}{k_{\alpha}} \sum_{\beta=0}^{1} \int_{0}^{\infty} \varphi_{\alpha}(s) V_{\alpha \beta}(s) f_{\beta}(s) d s . \tag{11}
\end{equation*}
$$

We set

$$
\begin{equation*}
f_{\alpha}=\sum_{\beta=0}^{1} c_{\beta} x_{\alpha \beta} \quad(\alpha=0 ; 1) \tag{12}
\end{equation*}
$$

and introduce the notation

$$
\begin{equation*}
M_{\alpha \gamma}=\sum_{\beta=0}^{1} \int_{0}^{\infty} e^{i k_{\alpha} s} V_{\alpha \beta} x_{\beta \gamma}(s) d s . \tag{11}
\end{equation*}
$$

We then obtain

$$
\begin{gather*}
x_{\alpha \beta}=\varphi_{\alpha} \delta_{\alpha \beta}+\sum_{\gamma=0}^{1} \int_{0}^{r} G_{\alpha \gamma}(r, s) x_{\gamma \beta}(s) d s, \tag{14}\\
c_{\alpha}=\delta_{\alpha 0}-\sum_{\gamma=0}^{1} M_{\alpha \gamma} c_{\gamma} . \tag{15}
\end{gather*}
$$

Solving the system (15), and taking Eqs. (11)-(13) into account, we get for the amplitude of the excitation

$$
\begin{equation*}
q_{1}=\frac{M_{10} k_{1}^{-1} \operatorname{Im} M_{11}-\left(1+M_{11}\right) k_{1}^{-1} \operatorname{Im} M_{10}}{\left(1+M_{00}\right)\left(1+M_{11}\right)-M_{01} M_{10}} . \tag{16}
\end{equation*}
$$

Taking it into consideration that $\sin k_{\alpha} r / k_{\alpha}$ is an analytic function of k_{α}^{2}, we can represent $x_{\alpha \beta}$ in the form of a series in k_{1}^{2}. Substituting this series in $M_{1 \gamma}$, and expanding exp $i k_{1} s$ in the radicand in powers of k_{1}, we get
$M_{1 \gamma}=M_{1 \gamma}^{(0)}+i k_{1} M_{1 \gamma}^{(1)}+k_{1}^{2} M_{1 \gamma}^{(2)}+i k_{1}^{3} M_{1 \gamma}^{(3)}+\ldots \quad(\gamma=0 ; 1)$.

The series (17) converges, generally speaking, only over some region of variation of k_{1}. The radius of convergence is determined by the form of $V_{\alpha \beta}(r)$. So far as $M_{0 y}$ is concerned, we can, by making use of (5), transform Eq. (13) to the form

$$
\begin{equation*}
M_{0 \gamma}=\sum_{\beta} \int_{0}^{\infty} e^{i x_{1} s+i k_{01} s} V_{0 \beta}(s) x_{\beta \gamma}(s) d s \tag{18}
\end{equation*}
$$

Expanding $\exp i \kappa_{1} s$ in powers of κ_{1}, we get

$$
\begin{equation*}
M_{0 \gamma}=M_{0 \gamma}^{(0)}+i x_{1} M_{0 \gamma}^{(1)}+x_{1}^{2} M_{0 \gamma}^{(2)}+k_{1}^{2} M_{0 \gamma}^{(3)}+\ldots \tag{19}
\end{equation*}
$$

Substituting (17) and (19) in Eq. (16), and then in Eq. (6), and limiting ourselves to terms of no higher order in k_{1} and κ_{1} than the second, we obtain

$$
\begin{equation*}
\sigma=4 \pi \frac{k_{1}}{k_{0}} a_{1} \frac{1+a_{2} k_{1}^{2}}{1+a_{3} k_{1}+a_{4} x_{1}+a_{5} x_{1}^{2}+a_{6} x_{1} k_{1}+a_{7} k_{1}^{2}} \tag{20}
\end{equation*}
$$

The coefficients $a_{1} \ldots a_{7}$ are expressed in terms of $M_{\alpha \gamma^{*}}^{(i)}$. In the case in which the threshold of excitation is sufficiently high, we can expand κ_{1} near the threshold in powers of k_{1}^{2}. We then have, with accuracy up to terms in k_{1}^{2},

$$
\begin{equation*}
\sigma=4 \pi\left(k_{1} / k_{0}\right) a_{1}\left(1+a_{2} k_{1}^{2}\right) /\left(1+a_{3} k_{1}+a_{4} k_{1}^{2}\right) . \tag{21}
\end{equation*}
$$

In a number of cases, we can neglect the term $V_{10} F_{0}$ in (7). This is the so-called method of distorted waves., ${ }^{1,2}$ In such an approximation, $M_{01}=0$, whence, as is easy to show, $a_{3}=0$. Thus, in the approximate method of distorted waves, the linear term of Eqs. (20) and (21) is absent.

[^0]${ }^{2}$ H. S. W. Massey, Rev. Mod. Phys. 28, 3 (1956).
Translated by R. T. Beyer
133

Statistical Retardation in Dielectric Breakdown of Solid Dielectrics

.E. A. Konorova
P. N. Lebedev Physical Institute, Academy of Sciences, USSR

(Submitted to JETP editor June 28, 1956)
J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 603-604 (March, 1957)

SEITZ ${ }^{1}$ made the assumption that, in computing the dielectric strength of crystals on the basis of Hippel's criterion, it is necessary to account for the fluctuations in the behaviour of the electrons in the energy exchange with the lattice. The possibility of such fluctuations is described by a certain probability that the electron will be accelerated to the ionization potential without collisions with the lattice. This assumption leads to the possibility of statistical retardation in the breakdown of thin layers of solid dielectrics, and also to the dependence of the dielectric strength of crystals on thickness (for the thickness range 10^{-3} to $10^{-4} \mathrm{~cm}$). ${ }^{2,3}$ In 1952-1954, Japanese investigators ${ }^{2,5}$ obtained data on the dependence of dielectric strength on the time of application of the voltage and on the thickness for samples of mica 3 to $5 \times 10^{-4} \mathrm{~cm}$ thick (dotted lines in Figs. 1, 2). These authors concluded that Seitz' assumptions were confirmed experimentally. The size of electron avalanches and also the number of initial electrons formed per second were computed. The quantities computed in this manner were in accordance with the approximate computations of Seitz.

FIG. 1. Dependence of the dielectric strength of glass and mica on the duration of voltage application. l-glass, 2-mica, 3-mica according to the data, Ref. 5

[^0]: ${ }^{1}$ N. Mott and G. Massey, Theory of atomic collisions, IIL, Ch. VIII (Russian translation).

