On the Possibility of Formulating a Meson Theory with Several Fields

A. D. Galanin
(Submitted to JETP editor February 7, 1956)
J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 552-8 (March, 1957)

Abstract

The following cases of interaction of several fields are considered: 1) N fermion and n boson fields with the same coupling constant, 2) two fermion and two boson fields, interacting with different constants, 3) fermion and boson fields with different isotopic properties. In all cases considered the physical charge tends to zero as the extended interaction approaches a point one.

IN articles by Pomeranchuk ${ }^{1}$ it has been shown that in pseudoscalar meson theory the interaction constant tends to zero as the transition from an extended interaction to the limit of a point one is carried out. It was assumed that the result does not depend upon the particular way of carrying out the limiting procedure, and therefore a special form proposed by Abrikosov and Khalatnikov ${ }^{2}$ was employed.

In the several examples, we consider this conclusion is not changed by the introduction of several interacting fields.

1. As a first example we consider N fermion fields (all with isotopic spin $1 / 2$) and n boson fields (all scalar or pseudoscalar with isotopic spin 1) interacting with each other with the same coupling constant g. We do not introduce any selection rules, so that all types of fermions can transform into each other, as can all types of bosons (the problem presents itself as a purely methodological one and the relation of the fields introduced to real particles is not considered).

It is necessary to take into account the fact that virtual bosons (or fermions) can be transformed from one type into another. Therefore the Green's function of the bosons $D_{a b}$ is a matrix, in which the indices a and b can take on n values. The diagonal elements $D_{a a}$ correspond to the propagation of a boson of type a without transformation, and the nondiagonal elements $D_{a b}$ to the preparation of a boson of type a with transformation into one of type b.

Neglecting the mass of the bosons, we express

$$
D_{a b}=d_{a b} / k^{2}
$$

In view of the fact that all bosons are equivalent (have the same charge, differences in mass being unimportant in the study of the asymptotic Green's function), all diagonal elements $d_{a b}$ are equal
$\left(d_{a a} \equiv d_{1}\right)$, as well as all non-diagonal elements
$\left(d_{a b} \equiv d_{2}, a \neq b\right)$. The matrix $d_{a b}$ is connected with the polarization operator in the following way
(P is the polarization operator, divided by k^{2}):

$$
\begin{equation*}
d_{a b}+d_{a c} P_{c b}=\delta_{a b} \tag{1}
\end{equation*}
$$

From the equivalence of all bosons it follows that all elements of $P_{a b}$ are equal $\left(P_{a b} \equiv P\right)$. Then Eq. (1) gives
$d_{1}+d_{1} P+(n-1) d_{2} P=1$,

$$
d_{2}+d_{1} P+(n-1) d_{2} P=0
$$

from which

$$
\begin{equation*}
d_{1}=\frac{1+(n-1) P}{1+n P}, \quad d_{2}=-\frac{P}{1+n P} \tag{2}
\end{equation*}
$$

We consider now a given boson line of a given diagram. To each such line there will correspond a factor

$$
n d_{1}+n(n-1) d_{2} \equiv n \Delta
$$

(n cases of propagation of a boson without transformation, $n(n-1)$ with transformation). From Eq. (2) follows

$$
\begin{equation*}
\Delta=1 /(1+n P) \tag{3}
\end{equation*}
$$

Analogously, for each fermion line it is necessary to write

$$
N \beta_{1}+N(N-1) \beta_{2} \equiv N B
$$

where β_{1} corresponds to propagation of a fermion without transformation, and β_{2}, with transformation
(the fermion Green's function G is, for large momenta, equal to $G=\beta / \mathbf{p}$). Analogous to Eq. (3) we have

$$
\begin{equation*}
B=1 /(1+N M) \tag{4}
\end{equation*}
$$

where M is the mass operator (divided by \mathbf{p}).
We note that Δ and B satisfy the same initial conditions as d and β in the theory with one boson and fermion, that is $\Delta(L)=B(L)=1$, where L is the momentum at which the interaction is cut off. In fact, when their interaction is excluded, the particles cannot undergo mutual transformations and therefore $d_{2}(L)=\beta_{2}(L)=0$.

Now if we turn our attention to the fact that the polarization operator arises from two fermion lines, the mass operator from one fermion and one boson line, and the vertex part from two fermion lines and one boson line, and take into account that all possible transitions of one fermion and boson into another are allowed, then it is immediately obvious that the equations for the Green's function and vertex parts in our case can be obtained from the corresponding equations of the theory with one boson and fermion, using the simple substitutions

$$
d \rightarrow \Delta, \beta \rightarrow B, \Gamma \rightarrow \Gamma, g \rightarrow N^{2} n g
$$

From this it follows that all conclusions which are valid for the theory with one boson and one nucleon can be automatically carried over to the case of many interacting fields considered.
2. Now we consider the case of different (in magnitude or in sign) charges. The general form of the interaction Lagrangian is as follows:

$$
\mathscr{L}=\sum_{i, k, l} a_{i k, i} \bar{\Psi}_{i} \psi_{k} \varphi_{l}
$$

By using a linear transformation of the fields ψ_{1} it is possible to bring the quadratic form $\sum_{i k} a_{i k, l} \bar{\psi}_{i} \psi_{k}$ into diagonal form, leaving the Lagrangian of the free fermion field unchanged.

Then

$$
\mathscr{L}=\sum_{i l} a_{i, l} \bar{\psi}_{i} \psi_{i} \varphi_{l}
$$

The further transformation of the Lagrangian using the substitution $\Phi_{i}=\sum_{i} a_{i, l} \varphi_{l}$ leads - in so far as this transformation is not, in general, orthogonal - to complicated free equations for the boson fields and does not simplify the problem.

We consider the following Lagrangian
$\mathscr{L}=g_{11} \bar{\psi}_{1} \psi_{1} \varphi_{1}+g_{22} \bar{\psi}_{2} \psi_{2} \varphi_{2}+g_{12} \bar{\psi}_{1} \psi_{1} \varphi_{2}+g_{21} \bar{\psi}_{2} \psi_{2} \varphi_{1}$.

Looking at the equations for the vertex parts we see that it is sufficient to introduce two vertex parts

$$
\Gamma_{\psi_{1} \psi_{1} \varphi_{1}}=\Gamma_{\psi_{1} \psi_{1} \varphi_{2}} \equiv \Gamma_{1} ; \Gamma_{\psi_{2} \psi_{2} \varphi_{1}}=\Gamma_{\psi_{2} \psi_{2} \varphi_{2}} \equiv \Gamma_{2} .
$$

From these equalities it follows that the polarization operator (and also the boson Green's function) are symmetrical: $P_{i k}=P_{k i}$. From the equality

$$
\begin{equation*}
d_{i j}+d_{i k} P_{k j}=\delta_{i j} \tag{6}
\end{equation*}
$$

we obtain

$$
\begin{array}{r}
d_{11}=\left(1+P_{22}\right) \Delta_{1}^{-1} ; d_{22}=\left(1+P_{11}\right) \Delta_{1}^{-1} ; \\
d_{12}=-P_{12} \Delta_{1}^{-1} \\
P_{11}=-1+d_{22} \Delta^{-1} ; P_{22}=-1+d_{11} \Delta^{-1} \\
P_{12}=-d_{12} \Delta^{-1}
\end{array}
$$

where

$$
\begin{align*}
& \Delta=d_{11} d_{22}-d_{12}^{2} \tag{9}\\
& \Delta_{1}=\left(1+P_{22}\right)\left(1+P_{11}\right)-P_{12}^{2}, \Delta \Delta_{1}=1
\end{align*}
$$

Symbolically, the equation for Γ_{1} has the following form (we always consider the problem in the same approximation as in Ref. 3):

$$
\begin{align*}
& \Gamma_{1}= \tag{10}\\
& \quad 1+\Gamma_{1} G_{1} \Gamma_{1} G_{1} \Gamma_{1}\left(g_{11}^{2} D_{11}+g_{22}^{2} D_{22}+2 g_{11} g_{22} D_{12}\right)
\end{align*}
$$

where G_{1} is the Green's function for the field ψ_{1}. Just as in the theory with a single field, we obtain for high momenta: [The case where the boson field has isotopic spin 1 is considered; the arguments of all functions are $\xi=\ln \left(-p^{2} / m^{2}\right)$. The prime indicates differentiation with respect to ξ.]

$$
\begin{gather*}
\alpha_{1}^{\prime} / \alpha_{1}=-\lambda_{1} ; \alpha_{2}^{\prime} / \alpha_{2}=-\lambda_{2} ; \tag{11}\\
\lambda_{1}=\left(\alpha_{1}^{2} \beta_{1}^{2} / 4 \pi\right)\left(g_{11}^{2} d_{11}+g_{12}^{2} d_{22}+2 g_{11} g_{12} d_{12}\right), \\
\lambda_{2}=\left(\alpha_{2}^{2} \beta_{2}^{2} / 4 \pi\right)\left(g_{21}^{2} d_{11}+g_{22}^{2} d_{22}+2 g_{22} g_{21} d_{12}\right) \cdot(12 \tag{12}
\end{gather*}
$$

For the fermion Green's function we have (the calculation is completely analogous to the theory with a single field ${ }^{4}$):

$$
\begin{equation*}
\beta_{1}^{\prime} / \beta_{1}=3 \lambda_{1} / 2 ; \quad \beta_{2}^{\prime} / \beta_{2}=3 \lambda_{2} / 2 \tag{13}
\end{equation*}
$$

The polarization operator $P_{i j}$ satisfies equations which can be written symbolically

$$
\begin{equation*}
k^{2} P_{i j}=\sum_{l=1}^{2} g_{i j} g_{i j} G_{l} \Gamma_{l} G_{l} \tag{14}
\end{equation*}
$$

From this we obtain*

$$
\begin{align*}
& P_{11}^{\prime}=-\frac{1}{\pi}\left(g_{11}^{2} \beta_{1}^{2} \alpha_{1}^{2}+g_{21}^{2} \alpha_{2}^{2} \beta_{2}^{2}\right) \tag{15}\\
& P_{22}^{\prime}=--\frac{1}{\pi}\left(g_{12}^{2} \alpha_{1}^{2} \beta_{1}^{2}+g_{22}^{2} \alpha_{2}^{2} \beta_{2}^{2}\right) \\
& P_{12}^{\prime}=-\frac{1}{\pi}\left(g_{11} g_{12} \alpha_{1}^{2} \beta_{1}^{2}+g_{22} g_{21} \alpha_{2}^{2} \beta_{2}^{2}\right)
\end{align*}
$$

Using Eqs. (7)-(9), it is easy to show that

$$
\begin{equation*}
\Delta^{\prime} / \Delta=4\left(\lambda_{1}+\lambda_{2}\right) \tag{16}
\end{equation*}
$$

From (12) we obtain

$$
\frac{\lambda_{1}^{\prime}}{\lambda_{1}}=2 \frac{\alpha_{1}^{\prime}}{\alpha_{1}}+2 \frac{\beta_{1}^{\prime}}{\beta_{1}}+\frac{g_{11}^{2} d_{11}^{\prime}+g_{12}^{2} d_{22}^{\prime}+2 g_{11} g_{12} d_{12}^{\prime}}{g_{11}^{2} d_{11}+g_{12}^{2} d_{22}+2 g_{11} g_{12} d_{12}}
$$

or, using Eqs. (11), (13), (7) - (9), we have

$$
\begin{aligned}
\lambda_{1}^{\prime} / \lambda_{1}= & 5 \lambda_{1}+4 \lambda_{2} \\
& -4 \alpha_{1}^{2} \alpha_{2}^{2} \beta_{1}^{2} \beta_{2}^{2}\left(g_{11} g_{22}-g_{21} g_{12}\right)^{2} \Delta /(4 \pi)^{2} \lambda_{1}
\end{aligned}
$$

The quantities λ_{1} and λ_{2} characterize the effective interaction of two fermions ψ_{1}, ψ_{1} or ψ_{2}, ψ_{2}. In addition, the interaction of ψ_{1} and ψ_{2} can be considered. We denote by λ_{3} the corresponding effective charge

$$
\begin{align*}
\lambda_{3}=\left(\alpha_{1} \alpha_{2} \beta_{1} \beta_{2} / 4 \pi\right)\left[g_{11} g_{21} d_{11}\right. & +g_{12} g_{22} d_{22} \tag{18}\\
& \left.+\left(g_{11} g_{22}+g_{12} g_{21}\right) d_{12}\right]
\end{align*}
$$

It is easy to verify that

$$
\lambda_{3}^{2}=\lambda_{1} \lambda_{2}-\alpha_{1}^{2} \alpha_{2}^{2} \dot{\beta}_{1}^{2} \beta_{2}^{2}\left(g_{11} g_{22}-g_{21} g_{12}\right)^{2} \Delta /(4 \pi)^{2}
$$

and therefore Eq. (17) can be written as

$$
\begin{equation*}
\lambda_{1}^{\prime} / \lambda_{1}=5 \lambda_{1}+4 \lambda_{3}^{2} / \lambda_{1} \tag{19}
\end{equation*}
$$

and analogously

$$
\lambda_{2}^{\prime} / \lambda_{2}=5 \lambda_{2}+4 \lambda_{3}^{2} / \lambda_{2}, \quad \lambda_{3}^{\prime} / \lambda_{3}=9\left(\lambda_{1}+\lambda_{2}\right) / 2
$$

We note that although four constants occur in the Lagrangian (5), only three combinations of these constants have physical meaning, as one can show by making the substitutions

$$
\begin{aligned}
\sqrt{g_{11}^{2}+g_{12}^{2}} \Phi_{1} & =g_{11} \varphi_{1}+g_{12} \varphi_{2} \\
& \sqrt{g_{22}^{2}+g_{21}^{2}} \Phi_{2}=g_{21} \varphi_{1}+g_{22} \varphi_{2}
\end{aligned}
$$

Also, effective charges λ_{i} correspond to these three combinations of constants.

From Eq. (19) it is seen that all derivatives of λ_{i} are positive, i.e., λ_{i} decreases with decreasing momentum.

Following Abrikosov and Khalatnikov, ${ }^{2}$ we introduce two limiting momenta: Λ_{k} for the integration over virtual bosons, and Λ_{p} for the integration over virtual fermions, with $L_{p}-L_{k}=\ln \Lambda_{p} / \Lambda_{k} \gg 1$. The Eqs. (19) are valid for $\xi<L_{k}$ and the values of $\lambda_{i}\left(L_{k}\right)$ are initial conditions for them. Just as in the the ory with a single field, for sufficiently large $L_{p}-L_{k}$ the values of $\lambda_{i}\left(L_{k}\right)$ must be small.

In fact, following Ref. 2, we obtain from the equations for the polarization operator the following boundary conditions for $P_{i j}$ at $\xi=L_{k}$:

$$
\begin{aligned}
& P_{11}=\frac{1}{\pi}\left(g_{11}^{2}+g_{21}^{2}\right)\left(L_{p}-L_{k}\right) \\
& \qquad P_{22}=\frac{1}{\pi}\left(g_{12}^{2}+g_{22}^{2}\right)\left(L_{p}-L_{k}\right) \\
& P_{12}=\frac{1}{\pi}\left(g_{11} g_{12}+g_{22} g_{21}\right)\left(L_{p}-L_{k}\right)
\end{aligned}
$$

From this we have, for example, for $\lambda_{i}\left(L_{k}\right)$:

$$
\lambda_{1}\left(L_{k}\right)=\frac{1}{4 \pi} \frac{g^{2}{ }_{11}+g^{2}{ }_{12}+\frac{1}{\pi} \cdot\left(L_{p}-L_{k}\right)\left(g_{11} g_{22}-g_{12} g_{21}\right)^{2}}{1+\frac{1}{\pi}\left(L_{p}-L_{k}\right)\left(g_{11}^{2}+g_{22}^{2}+g_{12}^{2}+g_{21}^{2}\right)+\frac{1}{\pi^{2}}\left(L_{p}-L_{k}\right)^{2}\left(g_{11} g_{22}-g_{21} g_{12}\right)^{2}}
$$

[^0]from which it is clear, for sufficiently large $L_{p}-L_{k}$, that indeed $\lambda_{1}\left(L_{k}\right) \ll 1$.

If $\lambda_{i}\left(L_{k}\right) \ll 1$, then Eqs. (19) are exact in so far as the more complicated vertex parts play no role. ${ }^{1}$ In order that the physical charge (i.e., the solution
of Eqs. (19) for small momenta) tends to zero as $L_{k} \rightarrow \infty$, it is sufficient in these conditions that the right-hand sides of Eqs. (19) are positive. We see that this condition is fulfilled.

Thus, the conclusion about the physical charge being zero still holds in the case considered.
3. We consider now a mixture of fields with different isotopic spins. The most characteristic peculiarities of this mixture of fields will be made clear by an example of four interacting fields: the ψ field, which is a spinor in ordinary space and a spinor in isotopic space; the Y_{i} field, which is a spinor in ordinary space and a vector in isotopic space; the φ_{i} field, pseudoscalar in ordinary space and vector in isotopic space; the θ field, scalar in ordinary space (it can also be taken as pseudoscalar) and spinor in isotopic space.

The interaction Lagrangian has the form ($\bar{\psi}=\beta \psi^{*}$, $\bar{Y}=\beta Y^{*}, \epsilon_{i j k}$ is the completely antisymmetrical tensor):

$$
\begin{equation*}
\mathscr{L}=i g_{1} \bar{\Psi}_{1} \gamma_{5} \tau_{j} \psi \varphi_{j}+i g_{2} \bar{Y}_{i \gamma_{5}} Y_{k}{ }_{j} i \varepsilon_{i k j}+g_{3} \bar{\psi} \tau_{i} Y_{j} \theta . \tag{20}
\end{equation*}
$$

We denote the Green's functions of the fields ψ, Y, φ and θ as follows:

$$
\begin{equation*}
G_{\psi}=\beta_{1} / \mathbf{p} ; \quad G_{Y}=\beta_{2} / \mathbf{p} ; \quad D_{\varphi}=d_{1} / k^{2}, \quad D_{0}=d_{2} / k^{2} \tag{21}
\end{equation*}
$$

It is necessary to consider three vertex parts

$$
\begin{equation*}
\Gamma_{\psi \psi \varphi_{j}}=\tau_{j \gamma_{5}} \alpha_{1} ; \quad \Gamma_{Y_{i} \jmath_{l} \varphi_{l}}=i \varepsilon_{i k l \gamma_{5} \alpha_{2}} ; \quad \Gamma_{\psi Y_{j}} \theta=\tau_{j} \alpha_{3} \tag{22}
\end{equation*}
$$

The equations for the mass and polarization operators and the vertex parts are shown schematically on the figure.

The structure of the equations for a, β and d do not differ at all from the theory with one pseudoscalar. If we introduce the following three effective charges

$$
\begin{align*}
& \lambda_{1}=\left(g_{1}^{2} / 4 \pi\right) \alpha_{1}^{2} \beta_{1}^{2} d_{1} ; \tag{23}\\
& \quad \lambda_{2}=\left(g_{2}^{2} / 4 \pi\right) \alpha_{2}^{2} \beta_{2}^{2} d_{1} ; \quad \lambda_{3}=\left(g_{3}^{2} / 4 \pi\right) \alpha_{3}^{2} \beta_{1} \beta_{2} d_{2},
\end{align*}
$$

then the equations for the functions $\alpha_{i}, \beta_{i}, d_{i}$ have the form

$$
\begin{aligned}
& \beta_{1}^{\prime} / \beta_{1}=3 \lambda_{1} / 2+3 \lambda_{3} / 2 ; \beta_{2}^{\prime} / \beta_{2}=\lambda_{2}+\lambda_{3} \\
& d_{1}^{\prime} / d_{1}=4\left(\lambda_{1}+\lambda_{2}\right) ; d_{2}^{\prime} / d_{2}=6 \lambda_{3}
\end{aligned}
$$

$\alpha_{1}^{\prime} / \alpha_{1}=-i_{1}-2 \lambda_{3} \sqrt{\lambda_{2} / \lambda_{1}} ;$
$\alpha_{2}^{\prime} / \alpha_{2}=\lambda_{2}-2 \lambda_{3} \sqrt{\lambda_{1} / \lambda_{2}}$;
$\alpha_{3}^{\prime} / \alpha_{3}=3 \lambda_{3}-2 \sqrt{\lambda_{1} \lambda_{2}}$.
The negative sign of the second terms in the equations for a comes from the choice of sign for the charges g_{1} and g_{2} (if θ is the pseudoscalar field, then the equations have the same form under a different choice of the relative sign of g_{1} and g_{2}).

Schematical description of the equations for mass and charge operators and vertex parts. Conventions: - ψ field, $-\ldots-\varphi$ field, $\sim \cdots \quad \theta$ field, $=Y$ field.

Employing Eqs. (23) and (24), we obtain the following equations for the effective charges

$$
\begin{align*}
& \lambda_{1}^{\prime} / \lambda_{1}=5 \lambda_{1}+4 \lambda_{2}+3 \lambda_{3}-4 \lambda_{3} \sqrt{\lambda_{2} / \lambda_{1}} \\
& \lambda_{2}^{\prime} / \lambda_{2}=4 \lambda_{1}+8 \lambda_{2}+2 \lambda_{3}-4 \lambda_{3} \sqrt{\lambda_{1} / \lambda_{2}} \tag{25}\\
& \lambda_{3}^{\prime} / \lambda_{3}=3 \lambda_{1} / 2+\lambda_{2}+29 \lambda_{3} / 2-4 \sqrt{\lambda_{1} \lambda_{2}}
\end{align*}
$$

Again using two limiting momenta, it is possible to show that the initial conditions for the system of equations (25) are $\lambda_{i}\left(L_{k}\right) \ll 1$. To guarantee the validity of this conclusion, it is only necessary that the d_{i}^{\prime} / d_{i} in Eqs. (24) are positive.

From Eqs. (25) it can be seen that if λ_{1}, λ_{2} and λ_{3} are of the same order, then all derivatives λ_{1}^{\prime}, λ_{2}^{\prime}, and λ_{3}^{\prime} are positive and all charges λ_{i} decrease with diminishing momentum. If initial values of λ_{i} of different order are given at the limiting momenta Λ_{k}, for example, $\lambda_{1}\left(L_{k}\right) \gg \lambda_{2}\left(L_{k}\right) ; \lambda_{3}\left(L_{k}\right) \sim \lambda_{1}\left(L_{k}\right)$, then as the momentum decreases, λ_{2} will grow and λ_{1} will diminish. Therefore, the point will come where the derivative of λ_{2} changes sign and λ_{2} also starts to decrease. Finally, if $\lambda_{1}\left(L_{k}\right)$ and $\lambda_{2}\left(L_{k}\right)$ are of the same order and $\lambda_{3}\left(L_{k}\right)$ is large, then λ_{1} and λ_{2} grow and λ_{3} diminishes (with decreasing momentum). Therefore, the growth of λ_{1} and λ_{2} will become slower, and finally all three charges will decrease.

From this it is clear that qualitatively the situation does not differ from the theory with one pseudoscalar field, i.e., all charges tend to zero with unlimited increase of L_{k}.
4. In all cases considered, the physical charge was equal to zero after the limiting momentum tended to infinity. For this two characteristics are important: (1) the positive sign of the derivative d^{\prime} / d, which leads to a small effective charge at the momentum Λ_{k} and allows restriction to the approximation considered. This sign is a consequence of general features of the theory (see Ref. 5) and should be positive (the d-function grows) in all variants of the theory; (2) the further decrease of charges, for momenta less than Λ_{k}. This decrease of charges occurs in all examples considered, although the derivative $\lambda^{\prime} / \lambda$, in general, contains terms of different signs. The case more complicated than that considered in Sec. 3, namely, the interaction of three fermion and three boson fields with different isotopic spins $(0,1 / 2,1)$ does not lead to a different result. One might think that also the second characteristic is connected with general features of all variants of contemporary field theory.
We note that we required $L_{p}-L_{k}=\ln \left(\Lambda_{p} / \Lambda_{k}\right)$ to be large compared to unity, but finite. If we require the stronger condition, namely, $\ln \left(\Lambda_{p} / \Lambda_{k}\right) \rightarrow \infty$ as $\Lambda_{p} \rightarrow \infty$ and $\Lambda_{k} \rightarrow \infty$, then the physical charge
will go to zero also for $\lambda^{\prime}=0\left(\xi<L_{k}\right)$ and even for $\lambda^{\prime}<0\left(\xi<L_{k}\right)$, provided only that $\ln \left(\Lambda_{p} / \Lambda_{k}\right)$ increases sufficiently rapidly as $\Lambda_{p} \rightarrow \infty$ and $\Lambda_{k} \rightarrow \infty$. If, however, this case actually occurs in some variant of the theory, then this signifies that there is ambiguity in the limiting transition from an extended interaction to a point one. In fact, setting $\Lambda_{k}=\Lambda_{p}$ in this case, we come to the conclusion that the physical charge can differ from zero.

The analysis of the different variants of the theory given above shows that the case $\lambda^{\prime} \leq 0$ does not occur.

Thus, the construction of a meson theory with several nucleon and meson fields is apparently just as impossible as the construction, in the framework of modern quantum field theory, of a non-contradictory theory with one meson field.

The author would like to use this opportunity to express his gratitude to I. Ia. Pomeranchuk, who suggested the necessity of studying the theory with several fields, and al so to V. B. Berestetskii, B. L. Ioffe, K. A. Ter-Martirosian and L. B. Okun' for discussion of a number of problems touched upon here.

[^1]Translated by G. E. Brown
126

[^0]: *We do not give the calculation in so far as it coincides completely with that in Ref. 4. The only question arising concerns "small additions" to the vertex part. One can verify directly that, just as in the theory with a single field, their contribution is two powers of α higher in the expressions for β^{\prime} and $P_{i j}^{\prime}$.

[^1]: ${ }^{1}$ I. Ia. Pomeranchuk, Dokl. Akad. Nauk SSSR 103, 1005; 104, 51; 105, 461 (1955); J. Exptl. Theoret. Phys. (U.S.S.R.) 29, 869 (1955); Soviet Phys. JETP 2, 739 (1956).
 ${ }^{2}$ A. A. Abrikosov and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR 103, 933 (1955)
 ${ }^{3}$ Landau, Abrikosov and Khalatnikov, Dokl. Akad. Nauk SSSR 95, 497, 773, 1177 (1954)
 ${ }^{4}$ Abrikosov, Galinin and Khalatnikov, Dokl. Akad. Nauk SSSR 97, 793 (1954); Galinin, Ioffe and Pomeranchuk, J. Exptl. Theoret. Phys. (U.S.S.R.) 29, 51 (1955); Soviet Phys. JETP 2, 37 (1956)
 ${ }^{5}$ H. Lehmann, Nuovo Cimento 11, 342 (1954)

