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Formulas are obtained for the temperature dependence of spontaneous magnetization 
near absolute zero for a ferromagnetic lattice consisting of one kind of atoms in the case 
which in the number of electrons with uncompensated spins is greater than the number of 
atoms, and for lattices of binary ordered alloys of various structure. In the calculation, 
use is made of the method of approximate second quantization. It is shown that, in all 
cases considered, the theory leads to the temperature dependence of spontaneous magneti
zation of the form of a 3/2 power law. 

1. INTRODUCTION 

0 NE of the problems of the theory of ferromag
netism is the deduction of a formula for the 

temperature dependence of spontaneous magnetiza
tion. This formula has been obtained for the ideal 
case, namely, fortheferromagnetic lattice of weakly 
interaction hydrogen-like atoms in the low tempera
ture region. In this case, 1 the specific spontaneous 
magnetization is equal to 

Os = nf!.o [1- (T I 6')'1•], (1.1) 

where n is the number of atoms and the number of 
electrons per unitmass, p. 0 is the Bohr magneton, 

e' = 4.17 (2c ) 213 J /ko' c = 1/2, 1,2 for the simple, 

space-centered and face-centered cubic lattices, 

respectively, J = exchange integral, k 0 is BoltiDJann's 

constant. 
Real crystals of ferromagnetic elements have: 1) 

siginificant electrical conductivity, 2, a number of 
electrons with uncompensated magnetic moments tha: 
is not equal to the number of ions in the lattice. The 
theory of ferromagnetism with account of the state of 
polarization and the effect of the conductivity of 
the electrons on the spontaneous magnetization was 
develo~ed in the researches of Vonsovskii, 2 and 
Turov. In the most general form, the theory of the 
polar model of the metal was recently developed by 

Bogoliubov and Tiablikov. 4 •5 

Moller 6 made an attempt to generalize the theory 
of the nonconducting ferromagnetic lattice to the 
case in which the number of electrons with uncom
pensated moments is greater than the number of 
atoms, and obtained a formula, similar to Eq. (1.1), 
hut with this difference, that e'=4.17 (2cz)2/3 
z! /k 0 , where z is the number of electrons with 

uncompensated spins per atom. Later, Holstein 
and Primakoff deduced a formula for the temperature 
dependence of spontaneous magnetization with 

account of magnetic interaction. When the inter
action terms are discarded, the formula of Holstein 
and Primakoff reduces to that of Moller. 

In the researches of Refs. 6 and 7, the exchange 
integrals between the electrons of neighboring 
atoms did not differ, hut the exchange integrals 
between the electrons of one and the same atom did 
not enter into the calculation. This corresponded to 
an implicit assumption that the states of the 
electrons belonging to one atom differ only in the 
spin function. As a result, a series of terms fall 
out in the calculation of the lowest energy levels, 
as will be shown. 

However, we can also begin from another, more 
consequential assumption, namely that the unper
turbed wave functions of the electrons belonging 
to any atom differ uot only in their spin functions, 
hut also in the functions of the coordinates of the 
electrons. In this case it is necessary to take 
it into account that the exchange integrals between 
electrons of corresponding atoms differ in their 
dependence on whether electrons are exchanged 
which are found in identical states, or electrons 
which are found in different states. Moreover 
we must take into account the exchange inte~als 
between the electrons of one and the same atom. 

Our problems are then .the following: 1) to ob
tain the theoretical dependence of the spontaneous 
magnetization on the temperature, near absolute 
zero, in thecase in which the number of electrons 
with uncompensated magnetic moments is larger 
than the number of atoms; 2) to derive formulas 
for the temperature dependence of spontaneous mag
netization in the region of low temperatures for 
binary ferromagnetic ordered alloys of different 
crystalline structure and different composition. 
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2. GENERAL FORM OF 1HE HAMILTONIAN OF 
THE PROBLEM AND ITS DIAGONALIZATION 

Let us consider the general case of a multi
component crystal, consisting of N atoms of h dif
ferent types, located at the points of the lattice; 
each of the atoms has z h ferromagnetic electrons 

which differ in state one from another. Altogether, 
there are n =IN h zh electrons in the lattice, where 

N h is the number of atoms of type h and I. N h = N. 

(It must be noted that the type of atom is also de
termined here by what neighbors surround it. Two 

identical atoms can belong to different types h.) 
The Hamiltonian of such a system, in the case in 

which only electrostatic interactions are taken 
into account, can be described in the following 
form: 

(2.1) 

+ ~ u, (qf'g') + ~ <I> (q,g, q!'d· 
(f,f',g' ) (f,f',g,g') 

Each electron of the system is characterized by 
two indices f and g: the index f defines the number 
of the lattice point at which the electron is located, 
and the index g defines the quantum state of the 
given electron in the atom. Inasmuch as only a 
single atom of any type can be located at a given 
lattice point f, we can neglect the indices h (which 
characterize the type of atom at the point f) in 
Eq. (2.1) and in subsequent expressions. The quan
tity U 0 is the constant potential energy of electro-

static interaction of the ions. These ions are as
sumed to be fixed at the points of the lattice, 
The quantity m is the electronic mass, A qbg is 

the Laplace operator in the coordinates of the 
electron {, g; uf is the interaction potential of the 
electron with any ion; ell is the interaction energy 
of the electrons. 

Transforming to the representation of second 
quantization, the Hamiltonian (2.1) can be written 

in the form 

where L and F are the matrix elements of the addi
tive and binary parts of the operator (2.1) in the 
system of single particle functions, ~ + and ~ 
are the second quantization operators in Fermi 
statistics; the summation is carried out over all 
indices. 

The unexcited wave function in the second 
quantization representation c 0 ( ••• N fgu) is de-

fined by a system of unitary occupation numbers: 

Nfl{a = ~nfga = ~ a/"traafl{a = 1. (2.3) 
{o) (cr) 

Making use of the operator form of perturbation 
theory, 5 we can obtain the equivalent Hamiltonian 
of the secular equation of the third approximation 
in the following form: 

iJ (;0 (2.4) 

- 1 ~ J (f f f A+ A + A ~ --2 ~ 'g, f • g )ajg,,.f'g'a'af'g'aafga'• 

where I({, g, {~ g ') is the exchange integral. The 
summation is carried out over all indices under 
the necessary conditions: 

f =I= f'' if g = g'; (2.5) 

g =!= g, if f = f'. 

Finding the spectrum of the energy eigenvalues 
of the system of electrons under consideration re
quires diagonalization of the Hamiltonian (2.4). 
For this purpose, we make use of the method of 
approximate second quantization in the form devel
oped by Bogoliubov and Tiablikov. 5 Applying 
this method to the general case, we can change 
Eq. (2.4) to the following form: 

] J(f,g,f',g')b/gbf'l('• 
(f,g,f',l{') 

""+ A+ where g k and g k are the operators of second 

quantization in Bose statistics. 
Diagonalization of the appropriate quadratic 

form is brought about with the aid of the canonical 
transformation: 
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(2.7) 

,... 1\. 

where ~ Z and ~ Z are operators which are also 

subject to Bose statistics, and the eigenvalues 

E k and U k (f,g) are determined by a set of n 

equations in terms of the number of possible values 
f and g: 

EkVk (f,g) = {. ~ J (f, g, f', g')} Vk (f,g) 
if,g1 ~.~ 

- ~J(f, g,f',g')Uk(f',g')(2.8} 
(/', g') 

and the normalization condition 

~ u~ (f,g) uk' (f,g) = 8 (k- k'). (2.9) 
(j,g) 

We shall seek the solution of the set (2.8) in the 
following form: 

Here h is an index characterizing the type of atom 
in lattice site f. 

Then, after elementary transformations, a system 
of equations is obtained for the determination of the 
eigenvalues of the energy E k • The number of 

these equations is equal to I z h : 

(2.11) 

+ { ~ Ig,g',h,h'} Uk(g,h)-
(g'.h') 

- ~ Ig g' h h' uk (g',h'), 
(g',h') •• 1 

where the following notation is used: 

/ (k) 
g,g'.h.h1 

(2.12) 

- v~/ (fh,g, f~·. g') {1 - exp [- ik(f~,- fh)1}, 

lf(,t(',h,h' = ']l(fh, g, f'h•.g'), 
(f',h') 

and the U k (f,g) satsifying the following normali

zation condition, as is easy to verify: 

~ u~ (g. h) uk' (g, h) = 8 (k- k'). (2.13) 
(g.h) 

We thus see that the problem of finding the energy 
spectrum of a system of electrons of a multi-com
ponent crystal reduces to the solution of the set 
z = zA + z B + • • · + z h linear homogeneous equa-

tions (2.1i) for the unknown functions U k (g, h). 

In the general case, all the unknown functions 
U k (f,g) are different, and consequently, all the 

equations of the set are different. However, in par
ticular cases, some equations (and sometimes, all 
of them) can, from the physical meaning of the 
problem, he shown to be identical, and therefore 
the order of the set is decreased, which permits us 
finally to develop the solution and find the spec
trum E k • For example, in the case of a pure metal, 

which has only a single ferromganetic electron per 
atom (z B = z C = ... = z h = 0, z a = 1 ), the solu-

tion of the problem reduces to the solution of a 
single equation. 5 If there were not one but z 
ferromagnetic electrons in each atom in the crys
talline lattice of the pure metal, then finding the 
spectrum of the energy E k would require the solu-

tion of a set of z equations. 
In the lattice of a disordered alloy, the different 

atoms f will have a different number of nearest 
neighbors of dffferent types and, consequent~y, their 
equations will be located in different conditions. 
The number of different equations of the system 
(2.11) can be shown to he sufficiently large and will 
be determined by the number of possible combi
nations of neighboring atoms of different types at 
each of the atoms of the alloy. 

It therefore follows that the degree of the equation 
for obtaining E k, which is obtained by equating the 

determinant of the system (2.11) to zero (and con
sequently, the number of possible energy levels E k ), 

will be larger the larger the number of electrons 
found in the lattice of the alloy under different 
conditions, in particular. as the ordering of the 
lattice becomes less. In the ordering, the number 
of possible values of E k decreases, and therefore 

the formula for the dependence of the spontaneous 
magnetization on thetemperature must change. 
Calculation in the general case of binary alloys 
cannot be carried through to completion, and we 
limit ourselves to a consideration only of a series 
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of completely ordered structures of binary alloys. 

3. TEMPERATURE DEPENDENCE OF THE SPON· 
TANEOUS MAGNETIZATION OF A METAL 
WITH TWO FERROMAGNETIC ELECTRONS 

PER ATOM 

Let there he two ferromagnetic electrons in each 
of N atoms of a crystal, located in two possible 
low energy states (we shall conditionally give the 
index g the values 1 and 2). Then, setti?g the 

determinant of the set (2.11) to zero, and taking it 
into consideration that 12\k) =l 12(k)* and / 21 =1 12 , 

we obtain a quadratic equation for the determination 
of E k which gives the following two solutions: 

(3.1) 

We are interested in the case of snall values of 
the wave number k, which are had at low temperatures. 
Taking into consideration only the exchange interval 
between nearest neighbor atoms, expanding (2.12) 

in a series in k and considering only the first terms 
of the expansion, we obtain for the particular case 
of a simple cubic lattice 

Ii~>::::::::ca2J(f, 1, f', l)k2=a2111k2; (3.2) 

~~~> = a2 1 (f, 2, f', 2) k2 = a2] 22k2 ; 

Ii~>=a21(f, l, f', 2)k2=a2112k2 : 

/12=l(f, l, f, 2)+61(f, l, f', 2)=1~2+6112• 

where a is a parameter of the crystalline lattice, 
J J are the exchange integrals between the 

11' 22 
electrons of adjacent atoms, located at identical 
positions, J 1 ~ is the exchange integral between 

two electrons located in different states in the same 
atom, J 12 is the analogous exchange integral for 

two nearest neighbors. 
The following expressions are then obtained for 

the values Ek (1) and£k(2 ): 

(3.3) 

mnd the Hamiltonian has the following diagonal form: 

fi = E0 + ~ E~> N\.1> + ~E\.2 > N\.2 >, (3.4) 
(k) (k) 

N" (1) ,_(1)+ ~ (1) 
k = c;k c;k ' 

If we take into account the effect on the electron 
of the external magnetic field H, then the eigen
values of the energy operator can be written in the 
form 

fi = E0 - 2[L0HN 

+ ~ {E\.1> + 2[L0H} N~> 
(k) 

(3.5) 

+ ~{E\.2 > + 2[L0H} N~>, 
(k) 

where N p) and N k<2 ) are the occupation numbers, 

which take on all the integral values from zero. 
Now, constructing the phase sum and carrying 

out standard calculations, we obtain the following 
relation for the mean magnetic moment M of the 
system of electrons under discussion: 

M = (k T olnZ) 
0 oH H=O 

(3.6) 

where G '= Na3 / 2c and c = 1/2, 1,2 for simple, 
body-centered and face-centered lattices, respec
tively, k 0 =Boltzmann's constant. 

The integrals entering into Eq. (3.6) are computed 

in elementary fashion, and the formula for the tem
perature dependence of the spontaneous magnetiz
ation of a ferromagnet possessing two electrons 
oer atom takes the form: 
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(3.7) 

At low temperatures, and for] 1~ and] 12 having 
12 

the order of usual exchange integrals (10 14 erg), 

1~2 +6] 12 >> k 0 T, the third term in the curly 

brackets is small in comparison with the second, 
and Eq. (3.7) leads in practice to the same law of 
dependence of M on T as in the Bloch-Moiler for
mula (1.1) for the case z = 2. Here 

0' = 3.88 (4c)'/, (Ju + J22 + 2Jl2) / 2k0 • (3.8) 

However, it should be noted that this dependence is 
obtained by us as the special case of a general 
formula. The general formula is derived with the aid 
of a method which differs essentially from the method 
used by Moller and by Holstein and Primakoff in 
deriving similar expressions. 

Equation (3.17) permits us to carry out an esti
mate of the various exchange integrals from the tem
perature dependence of the spontaneous magneti
zation, known from experiment. The estimate from Eq. 
(3.8) gives, for iron, ] 11 + f 22 + 2] 12 "' 800 k 0 • 

If both electrons are found in a single shell, we can 
set ] 11 = ] 2 2 = ] , and then our estimate gives 

] 11 +] 12 "'400k 0 , i.e., for 112 > 0,] < 400 k 0 

For ] 12 "' ] 11 = f ; ] "' 200 k 0 • 

4. TEMPERATURE DEPENDENCE OF THE 
SPONTANEOUS MAGNETIZATION OF A 
METAL WITH z FERROMAGNETIC ELEC

TRONS PER ATOM 

For the approximate solution of the problem of the 
determination of the energy spectrum of a ferro
magnet with z ferromagnetic electrons per atom, and 
for the determination of the character of the temper
ture dependence of its spontaneous magnetization, 
we made use of a method similar to that used by 
Born 8 for the calculation of the frequency spectrum 
of the characteristic vibrations of a crystalline 
lattice. His method consisted of an expansion in 
powers of a small parameter of the k coefficients for 
the unknowns and the unknowns themselves in 
a system of linear homogeneous equations (2.11), 
and the consequent determination of the coefficients 

of these expansions. 
Let us write (2.11) in the following form: 

(Ag-Ek)Uk(g)+ ~ A~g'Uk(g')=0,<4 · 1) 
(g'<tg) 

Ag = I~i + ] 1 ~g', (4.2) 
(g1:~') 

(k) 
Agg'=lgg'- fgg' (g, g' = 1, 2, ... , z). 

The condition for the solvability of theset of 
equations (4.1) is the vanishing of its determination. 
This gives us an equation of degree z for the deter
mine of the z eigenvalues of the energy E k , 

wherein, inasmuch as the coefficients A are of Her
mitian form, all the E k will be real. 

For the approximate determination of the eigen
values of the energy just mentioned, we make use 
of thefact that as T -+0, the wave number k is a 
small quantity and we expand the coefficients A g, 

A gg,, and also E k and U k (g) in series in k. 

Limiting ourselves to the quadratic terms, we get 

Ag =A~'+ lk J2 A~', (4.3) 

Ek = E~O) +I k 12 Ek2', 

A(O) I k 12 A(2) Agg' = gg' + gg'• 

u k (g) = Uk0) (g) + I k 12 Uk2) (g). 

Here 

A(2) _ a2J A<2> 2J g - gg, gg' = a gg', 

and by] gg, f gg ,and 1;g, we mean 

J (f, g, f' + 1 , g), 

J (f, -g, f + 1, g') H J (f, g, f,g'). 

and J (f, g, f,g'). 
Substituting the series (4.3) in Eq. (4.1) and 

equating coefficients for equal powers of k to zero, 
we get as a consequence the system of equations of 
the different approximations (we restrict ourselves 
to the second approximation): 
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(4.4) 

(A~o>- Ei0 >) Viol (g) + ~ A~1~u~> (g') = 0, 
(g*g') 

(A~> - E~o>) u~z> (g) + ~ A~eJ,ul.2> (g') (4.5) 
(g+g') 

=- (A12>- £i2>) Vio> (g)- ] A1~~uio> (g'). 
(go"g') 

It is easy to show that the equation of degree z, 
obtained by setting the determinant of the system 
(4.4) equal to zero, will always have one root equal 
to zero, Ek(O) = 0, namely, for the condition that 

1 ( 0) 
the unknown U k are equal to each othet:: 

uio) (1) = via) (2) = ... = uio) (z) = c, (4.6) 

where c is an arbitrary constant. 
Now, substituting the value E ~0) = 0 and solving 

(4.6) in a system of equations of the second ap
proximation (4.5), we get 

A~>ui2> (g) + ~ A~~~uiz> (g') 
(g*g') 

(4. 7) 

= _[<A <2> _ E<2>) _ ~ A<2>] 
g k -".J gg' c. 

(g+g') 

The system of inhomogeneous equations (4. 7) is 
solvable only when the vector whose components a-e 
are the right sides of these equations, are ortho
gonal to all vectors whose components form the sys
tems of partial solutions of the corresponding homo
geneous equations. The homogeneous equations 
obtained from the left side of (4. 7) coincide with 
the equations (4.4); consequently, they have a system 
of partial solutions (4.6). Taking this into account, 
and considering that c f, 0, we get from the condition 

for the solvability of the system of equations (4. 7) 
an equation for Ekt.:l.> • Solving this latter equation, 

and substituting the resultant expression for E k $2 l 
into (4.3), we get 

Ekl = Ei~ + k2EW 
(4.8) 

It is easy to note that the structure of the coeffi
cients of the equations of the set (4.4) are such 
that the secular equation of this system can have 
only one zero root. Actually, the value E k (0) = 0 

satisfies the system of equations (4.4) only when 
all the solutions of this system U ko) (g) are equal 

to one another. In all the remaining cases, the E k (O) 

are different from zero and have real positive 
roots. In general, there are different, although 
multiple roots are also possible. 

It should be pointed out that if there is any 
possibility of determining the roots E k (O l of 

the secular equation of the system of first ap
proximation, then the corresponding roots E k (2) 

are also obtained, and consequently the eigen
values Ek of the energy of the crystal. The 

values Ek ~0) , ••• , E kz(O) , as was shown above, 

are different from zero; therefore terms indepen
dent of k enter into the expressions for all the E k 

except E kl . Thus the character of the energy 

spectrum in the general case for z > 2 will be the 
same as in the particular case when z = 2. 

The formula for the temperature dependence of the 
spontaneous magnetization of the ferromagnet 
with z uncompensated spin magnetic moments per 
atom will have the following form: 

M = zNtJ.o { 1 _ ~~ (k;~t· (4.9) 

__ A2_ (~o·T__)'I•exp (- _5_) 
z 62 k0T 

A ( 'I• e' ... - ____:__ keoT) exp (- _2_)} ' 
Z z, k0T 

where A 1" A 2, ... , A z are certain constants of crder 1 o- 1; 

but e2: 1g3, ... 'ez, e;, ... ' e2'are certain 

function!; of the exchange integrals ! gg, J gg, 

x(g,g'=l,2, ... , z) . 
• 

5. TEMPERATURE IEPENDENCE OF TilE 
SPONTANEOUS MAGNETIZATION OF OR

DERED BINARY ALLOYS 

Let us consider a !:leries of binary, completely 
ordered, ferromagnetic alloys, and for simplicity, 
we assume that the atoms of both components A 
and B possess only one ferromagnetic electron 
apiece (z A = l, z 8 = l). This permits us to omit 
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the index gin all the expressions below. 
l. Cubic lattice of an alloy of the type NaCl. 

In this case, each atom A has 6 nearest neighbors 
B, and conversely, each atom B has 6 neighbors A. 
The indices h take only two values, A and B. The 
system (2.11) reduces to ~wo linear equations 
which are homogeneous relative to U k (A) and U k(B). 

After several transformations, taking only the 
exchange integrals between nearest neighbors 
into account, and expanding the coefficients of 
these equations in series in small values of the 
wave number k, we get, with accuracy up to terms 
of second order: 

+ {JAB a2 1 k ! 2 - 6J AB) U k (B) = 0, 

(J BA a2 1 k 12 - 6J BA) U k (A) 

(5.1) 

+ (6JBA- Ek) uk (B)= o, 
where I AB and I B A refer respectively to /(fA, f B) 

and I (f B , fA). Setting the determinant of this 

system equal to zero, andtaking it into account that 
I AB = 18 A, we get a quadratic equation for E k , 

which has the following solution: 

E~) =JAB a2 k2 , E~2) = l2JAB- JAB a2 k2 • (5.2) 

Carrying out the usual statistical-thermodynamical 
calculations, we finally get the following equation 
for the spontaneous magnetization: 

N-1 

M = N !Lo - 2[-Lo ~ { 2 1 
k=O exp JAB a k2 I k0 T} - 1 

(5.3) 

N-1 

2 ~ 1 
- !Lok~ exp{[12JAB-JABa2k2]JkoT}-1' 

The exponent in the first sum of this expression is 
essentially a positive quantity for arbitary k; 
therefore the first sum is convergent and can be 
replaced by an integral in k from 0 to co . In the 
second sum, the condition of the smallness of k 
plays the essential role: this sum will be converg
ent only for 12 I AB -I AB a2 k 2 > 0 i.e., for the 

condition k < y'I2 a. This means that in the 
transition from a sum to an integration in the se
cond integral, it is necessary to set the upper limit 
equal to a sufficiently high finite quantity which, 
however, must be less than y'T2/ a. 

Thus, for the temperature dependence of the 
spontaneous magnetization of an alloy with a 

lattice of the type NaCl, we get the formula 

~A_ N {I 1,:106 ( k0 T ) 8 /z 'Vl- !Lo ---r--
11:'2 \JAB 

B 

__ _!__ ( k0 T )'I• e-<X' ~ x2 dx 
n;2 J ~ -x• -a ' AB J e -e 

0 

(5.4) 

ex = l2J AB I k0 T, B < ( 12J AB I k0 T)'l• = ex'/• • 

The integral in thesecond term is a finite quantity, 
but e-o. for T -->0 approaches co; therefore, for 
4ow temperatures, the second term falls off rapidly 
and plays no practical role. 

2. CUBIC LATTICE OF AN ALLOY OF THE TYPE 
CsCl (z A = z B = I) 

This case is very much like the preceding. Here 
the atoms A or B also have as nearest neighbors 
atoms of B or A, respectively. The difference lies 
in the fact that the number of nearest neighbors is 
equal to 8 here, and these neighbors are located 
not along the crystallographic edges of the cube 
but along its spatial diagonals. In this case the 
indices h also take on only two values and the 
system (2.ll) reduces to two linear equations 
which are homogeneous relative to U k (A) and U k(B~ 

From the secular equation solution, we get forE k 

the values 

For M at low temperatures, we get the same for
mula as (5.4), but ex= 16JABikoT. 

3 Cubic lattice of the compound AB 3 of the type 

FeNi3 ( z A = z AB = 1 ). In this case atom A will 

have 12 nearest neighbors of B, at a distance 
of a /y'21rom it and located in the centers of the 
cube faces. Each B atom will also have 12 nearest 
neighbors, of which 4 will be atoms of A and 8 
atoms of B. Here the atoms of A will be found in a 
plane while the 8 of the neighbors of type B will 
be found in two plane parallel to the first. Thus the 
atoms of A are equally distributed in the sense of 
symmetry of their nearest neighbors, into three types 
(of equal number) depending on what planes they 
have by way of nearest neighbors of atoms of A. It 
then follows that we have four types of atoms in the 
case under consideration and the indices h will 
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take on the four values A, B , B and 8 3 the sys-
1 2 

tern (2.11) reduces to four equations. 
We identify the coordinate axes with the tetragonal 

axes of the cube. After the correspondiq?; trans
formations and expansions of the coefficients in 
powers of the components k 1 , k 2 and k 3 of the wave 

number k (with accuracy up to terms of second order) 
we get the following system of four linear homo
geneous equations: 

+ Cm U k (Bm) + Cn U k (Bn) = 0, 

c1 U k(A) + (cu- Ek) U k(Bz) 

(5.6) 

+ Czm U k (Em) + Czn U k (Bn) = 0. 

Cz= ~ JAna2 (k;,+k~)-4JAB, 

Ctz = 4hn + 8J BBt 

(5.7) 

1 
Cmz = Cnz = 2 J BB a2 (k7n + k~) - 4J BB, 

and the indices l, m, n run through the values 1 ,2,3. 

] AB = ] A:B = ] AB =JAB ' while J B B =] B B 
1 2 3 m 

since the exchange integrals here depend only on 
the atoms between which the electron exchange 
takes place, and do not depend upon the type of 
neighbors. 

Setting the determinant of (5.6) equal to zero, we 
obtain a fourth degree equation for the determination 
of the eigenvalues E k • We limit ourselves to the 

approximation solution of the problem by the method 
given above. Expanding the coefficients and the 
unknowns [in Eqs. (5.6) ] in series of small 
k 1 , k 2, and k 3 and obtaining by rough calculations 

systems of equations of first and second approxima
tion, we find for E k(k > the value 

The remaining roots E k(2 ), E k(3 ) , E k<4 ) with the 

exception of the term depending on k 2 will also 

contain terms independent of k. We get the for
mula for the temperature dependence of spontaneous 
magnetization of the alloy under consideration 
(for T __, 0° K) in the form 

(5.9) 

_ A ~r ko T )'I• (_ ~) 
5 exp k T 

2 \ 0 

( k 0 T \'I• ( 0~ ) -B - 0-) exp ---
, ~ \ k0 T 

~ (. k0 T )'I• ( 6~ \ t - C ' a exp - -- )J 
\ v4 • k0 T 1 ' 

where A, B, C are constants of the order 10,- 1 and 

() 2 , 612', ••• are functions of the exchange inte-

grals] AB and] BB. Here, also for low tempera

tures (close to T = 0 ° K), the terms containing ex
ponential factors virtually vanish and the "three
halves law" must hold. 

Applying the methods outlined above, we can 
complicate the problem and consider the case of a 
binary ferromagnetic alloy, the atoms of whose com
ponents have different (and not equal to unity) 
numbers offerromagnetic electrons. However, as 
rough calculations have always shown, such a com
plication is not of essential interest, inasmuch 
as the character of the temperature dependence of 
spontaneous magnetization in this case is not ma
terially changed. 
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