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WE calculated theoretically the distribution of 
nucleon-nucleon collisions at 5.3 bev from the 

number of secondary particles, using the statisti
cal theory of multiple-particle formation 1 with and 
without the isobar states 2 • In the calculations we 

employed the method suggested in Ref. 3, with 
which statistical weights can be accurately cal
culated. 

The percentage statistical weights of the various 
processes are given in Table I. A classification 
by charged state, as required for conservation of the 

isotopic spin, is given in Table II for(p-p)-colli
sions and in Table III for ( n-p )-collisions ( N--
nucleon, N '---isobar state, M---number of pions). 
Thus, for example, for ( p-p )-collisions the process 
NN 2rr (the statistical weight of which is indi

cated in Table I) gives a probability of 0.300 for 
the charged state ( pp +-), a probability of 0.100 
for the charge state (ppOO), etc. (see Table II). 

From the data cited it is easy to obtain the dis
tribution of the inelastic collisio-ns from the number 

of charged particles ("prongs") which, in the 
case of ( p-p )-collisions, can be compared with the 
experimental data by Fowler and others 4 • Such a 

comparison is shown in Table IV. It is seen from 
this Table that allowing for the resonant interac
tion between the nucleons and mesons by intro
ducing the isobar states leads to a better agree
ment with experiment. 

In conclusion, I thank I. L. Rozental' for useful 
advice. 

We note with gratitude the constant interest of 
the late ProfessorS. Z. Belen'kii, who stimulated 
the performance of the calculations. 

TABLE I 

Number I Type 

I 
Statistical Weight (%) Num- I TYJ,e 

I 
Statistical Weight(%) 

of of 

I 
hero£ of 

[ mesons process p-p n-p mesons process p-p n-p 

0 NN 0.3 0.4 3 NN3rr 4.5 4.5 
1 NNrr 6.5 6.8 NN'2rt 31.8 31.0 

]'\!'\' 1.0 0.7 N'F'rr 11.7 11.1 
2 l'N2rt 11.5 12.0 4 /I'N4rr 2.7 2.7 

f\'/l'rt 16.7 17.4 /IN'3rt 1.2 1.2 
N'N' 0.9 1.2 N'JY2rt 11.2 11,1 
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TABLE n 
Probabilities of Charged States of Various 

Number of Processes 

Mesons 
Charged State 

I I NNmn: NN'(m-1)n: N'N'(m-·1)n: 

0 pp 1.000 
1 ppO 0.~50 0.167 

pn+ 0.7.10 0.833 
2 pp+- 0.300 0.350 0.200 

ppOO 0.100 0.117 0.178 
p"t+O 0.450 0.483 0.578 
nn++ 0.150 0,050 0.044 

3 PP+-0 0.:67 0.~80 0.244 
pn++- 0.333 0.360 0.422 
ppOOO 0.033 0.033 0.030 
pn·+ 00 0.233 0,<.47 0,L52 
nn++O 0.134 0.080 0.052 

4 PP++-- 0.122 0.131 0.119 
pp+-00 0.180 0.190 0.186 
pn++-0 0.408 0.431 0.480 
nn+++- 0.082 0.060 0.036 
pp 0000 0.012 0.013 0.014 
pn + 000 0.106 0,110 0.112 
nn +-:- 00 0.090 0.065 0.053 

TABLE III 
Probabilities of Charged States of Various Processes 

Number of 

I l Mesons m Charged State 
NNmn: NN'(m-1)n: N'N'(m-2)n: 

0 pn 1.000 
1 pp- 0.278 0.167 

pnO 0.444 0.666 
nn+ O.:C78 0.167 

2 pp-0 0.189 0.137 0.067 
pn+- 0.466 0.563 0.733 
pnOO 0.156 0.163 0.133 
nn+- 0.189 0.137 0,067 

3 pp+-- 0.138 0.124 0.076 
pp-00 0.100 0.087 0.078 
pn+-O 0.462 0.508 0.611 
nn ++- 0.138 0.1:24 0.076 
pn 000 0.062 0.070 0.081 
nn + 00 0,100 0.087 0.078 

4 pp+--0 0.179 0.163 0,133 
pn++-- 0.L09 0,2:9 0.267 
pp-000 0.048 0.043 0.035 
pn +-00 0.316 0.338 0.380 
r.n ++-0 0.179 0,163 0,133 
pnCOOO 0.021 0.021 0,017 
nn + UOO 0.048 0.043 0,035 
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TABLE IV 

Number of 
"prongs" 

(inelastic 
interactions) 

Experiment of 
-- Ref. 4 

~ 

2 14 
4 16 
6 2 
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THE consequences of the renormalizability of 
quantum electrodynamics and meson theory which 

have been obtained by Gell-Mann and Low l and 
Bogoliubov2 are most easily formulated, in our 
opinion, in the following way. We shall start from 
the following equations of Gell- Mann and Low 1 

(l) 

Here CJ..c, f3c and de are the asymptotic expres

sions for the slowly-varying factors of the renormal

ized vertex parts and Green's functions for the 

nucleon and meson*, gc is the renormalized meson 

Number of Events 

Theoretical (iso-I Theoretical (iso- bar states not 
bar states iocluded) included) 

15.1 21,5 
16.3 10.5 
0.6 0.5 

coupling constant, g= ln(-k 2/m 2 ), L. = ln(A2/m~ 
(A is the momentum "cutoff"). The quantities a., 
{3, d, g 0 are the nonrenormalized quantities corre

sponding to the cutoff momentum. 
For convenience ,we have introduced the loga

rithmic variables g and L from the beginning. In 
addition to the trivial inference that CJ.., f3 and d be-
come unity for g = L, Eq. (1) includes the state
ment, fundamental in what follows, that for g >> 1, 
a., f3 and d asymptotically approach functions only 
if the difference ~- L = ln (- k2 /A 2 ), i.e., no 

longer depend on the nucleon mass m. 

We then introduce a quantity which may be called 
"the effective coupling constant" 

The second of Eqs. (2) is obtained from (1) and 
from the relation between the renormalized and non
renormalized coupling constants. From Eq. (2) it 
is seen that the effective coupling constant g may 
be considered either a function of g~ and g- L, 
or of g~ and f 

The final formulation consists of the assertion 
that the logarithmic derivatives of a. and a. C, etc., 

with respect to g, which are equal according to 
Eq. (1), depend on one variable, namely, on the 
effective coupling constant 

r;.' I r;. = r;.~ I r;.c = F1 (g2); [1' I~= [1~ I ~c = F2 (g2); (3) 

d' 1 d = d~ I de = Fa (g2 ); 

(g2)' I g2 = 2Fl (g2) + 2F2 (g2)+ Fa (g2) 

The primes here denote differentiation with respect 
to the arguments g- L or g, whichever is appropri
ate. The last of Eqs. (3) follows from the first 
three and Eq. (2). As an example, let us prove the 
first of the equations. According to Eq. (2), { 


