⁶ Sample, Neilson and Warren, Canad. J. Phys. **33**, 350 (1955).

⁷ R.G.P. Voss and R. Wilson, Phil. Mag., Ser. 8, 1, 175 (1956).

Translated by J. G. Adashko 158

Multiple Formation of Particles in 5.3 bev Nucleon-Nucleon Collisions

V. M. MAKSIMENKO AND A. I. NIKISHOV P. N. Lebedev Physical Institute Academy of Sciences, USSR (Submitted to JETP editor July 12, 1956) J. Exptl. theoret. Phys. (U.S.S.R.) 31, 727-729 (October, 1956)

W E calculated theoretically the distribution of nucleon-nucleon collisions at 5.3 bev from the number of secondary particles, using the statistical theory of multiple-particle formation¹ with and without the isobar states². In the calculations we employed the method suggested in Ref. 3, with which statistical weights can be accurately calculated. The percentage statistical weights of the various processes are given in Table I. A classification by charged state, as required for conservation of the isotopic spin, is given in Table II for(p-p)-collisions and in Table III for (n-p)-collisions (N--nucleon, N'---isobar state, M---number of pions). Thus, for example, for (p-p)-collisions the process $NN \ 2\pi$ (the statistical weight of which is indicated in Table I) gives a probability of 0.300 for the charged state (pp + -), a probability of 0.100 for the charge state (pp 00), etc. (see Table II).

From the data cited it is easy to obtain the distribution of the inelastic collisions from the number of charged particles ("prongs") which, in the case of (p-p)-collisions, can be compared with the experimental data by Fowler and others⁴. Such a comparison is shown in Table IV. It is seen from this Table that allowing for the resonant interaction between the nucleons and mesons by introducing the isobar states leads to a better agreement with experiment.

In conclusion, Ithank I. L. Rozental' for useful advice.

We note with gratitude the constant interest of the late Professor S. Z. Belen'kii, who stimulated the performance of the calculations.

Number	Type	Statistical Weight (%)		Num-	Type	Statistical Weight (%)	
ot mesons	oi process	p - p	n – p	ber of mesons	of process	p - p	n – p
0 1 2	NN NN π NN' NN2π N'N'π N'N'	0.3 6.5 1.0 11.5 16.7 0.9	$0.4 \\ 6.8 \\ 0.7 \\ 12.0 \\ 17.4 \\ 1.2$	3 4	NN3π NN'2π N'N'π N'N4π NN'3π N'N'2π	4.5 31.8 11.7 2.7 1.2 11.2	4,5 31.0 11.1 2.7 1.2 11,1

TABLE I

Number of		Probabilities of Charged States of Various Processes			
Mesons	Charged State	NNmπ	$NN'(m-1)\pi$	$N'N'(m-1)\pi$	
0	D D	1.000			
1	p p 0	0.250	0,167		
	pn +	0.750	0.833		
2	pp +	0,300	0.350	0,200	
	<i>pp</i> 00	0,100	0.117	0,178	
	$p_{1} + 0$	0.450	0.483	0,578	
	nn+	0.150	0,050	0.044	
3	pp + -0	0.267	0.280	0.244	
	pn + +	0,333	0.360	0,422	
	<i>pp</i> 000	0,033	0,033	0.030	
	pn + 00	0.233	0,247	0,252	
	nn + + 0	0,134	0.080	0.052	
4	<i>pp</i> ++	0.122	0.131	0.119	
	pp + -00	0.180	0.190	0.186	
	pn + + -0	0.408	0.431	0,480	
	nn + + + -	0.082	0.060	0.036	
	<i>pp</i> 0000	0,012	0.013	0,014	
	pn + 000	0.106	0,110	0,112	
	nn + + 00	0,090	0.065	0,053	

TABLE II

TABLE III

	Charged State	Probabilities of Charged States of Various Processes			
Number of Mesons <i>m</i>		NNmπ	<i>NN′</i> (<i>m</i> −1)π	$N'N'(m-2)\pi$	
0 1	pn pp —	1,000 0,278 0,444	0.167		
2	$ \begin{array}{c} pn \\ nn \\ pp \\ pp \\ pn \\ + \\ - \end{array} $	0.278 0.189 0.466	0.167 0.137 0.563	0.067	
3	$ \begin{array}{c} pn \ 00\\ nn + - \\ pp + - \\ nn - 00 \end{array} $	$\begin{array}{c} 0.156 \\ 0.189 \\ 0.138 \\ 0.100 \end{array}$	0,163 0,137 0,124 0,087	0.133 0,067 0.076 0.078	
	$ \begin{array}{c} pn \\ pn + - 0 \\ nn + + - \\ pn 000 \end{array} $	0,462 0,138 0,062	0,508 0,124 0.070	0,611 0,076 0,081	
4	nn + 00 pp + 0 pn + + nn - 000	0,100 0.179 0.209 0.048	0.087 0.163 0.229 0.043	0.078 0,133 0.267 0.035	
	$ \begin{array}{c} p_{p} & p_{r} + -0 \\ p_{n} + -0 \\ p_{n} & 0 \\ p_{n} & 0 \\ n_{n} + 0 \\ \end{array} $	0.316 0.179 0.021 0.048	0.338 0,163 0,021 0,043	0.380 0.133 0.017 0.035	

Number of	Number of Events				
"prongs" (inelastic interactions)	Experiment of Ref. 4	Theoretic al (iso- bar states included)	Theoretical (iso- bar states not included)		
2 4 6	14 16 2	15.1 16.3 0.6	21,5 10.5 0.5		

TABLE IV

¹ E. Fermi, Progr. Theoret. Phys. 5, 570 (1950); Phys. Rev. 81, 683 (1951).

² S. Z. Belen'kii and A. I. Nikishov, J. Exptl. Theoret. Phys. (U.S.S.R.) 28, 744 (1955); Soviet Phys. JETP 1, 593 (1955).

³ V. M. Maksimenko and I. L. Rozental', J. Exptl. Theoret Phys. (U.S.S.R.) (to be published).

⁴ W. Fowler et al., Phys. Rev. 100, 1802 (1955).

Translated by J. G. Adashko 159

Consequences of the Renormalizability of Quantum Electrodynamics and Meson Theory

V. V. SUDAKOV (Submitted to JETP editor July 14, 1956) J. Exptl. Theoret. Phys. (U.S.S.R.) 31, 729-731 (October, 1956)

THE consequences of the renormalizability of quantum electrodynamics and meson theory which have been obtained by Gell-Mann and Low^1 and Bogoliubov² are most easily formulated, in our opinion, in the following way. We shall start from the following equations of Gell-Mann and Low^1

$$\alpha (g_0^2, \xi - L) = \frac{\alpha_c (g_c^2, \xi)}{\alpha_c (g_c^2, L)}, \qquad (1)$$

$$\beta (g_0^2, \xi - L) = \frac{\beta_c (g_c^2, \xi)}{\beta_c (g_c^2, L)}, \quad d (g_0^2, \xi - L) = \frac{d_c (g_c^2, \xi)}{d_c (g_c^2, L)}.$$

Here α_C , β_C and d_C are the asymptotic expressions for the slowly-varying factors of the renormalized vertex parts and Green's functions for the nucleon and meson*, g_C is the renormalized meson

coupling constant, $\xi = \ln(-k^2/m^2)$, $\vec{L} = \ln(\Lambda^2/m^2)$ (Λ is the momentum "cutoff"). The quantities α , β , d, g_0 are the nonrenormalized quantities corresponding to the cutoff momentum.

For convenience, we have introduced the logarithmic variables ξ and L from the beginning. In addition to the trivial inference that α , β and d become unity for $\xi = L$, Eq. (1) includes the statement, fundamental in what follows, that for $\xi >> 1$, α , β and d asymptotically approach functions only if the difference $\xi - L = \ln (-k^2/\Lambda^2)$, i.e., no

longer depend on the nucleon mass m.

We then introduce a quantity which may be called "the effective coupling constant"

$$g^{2}(\xi) = g_{0}^{2} \alpha^{2} (g_{0}^{2}, \xi - L) \beta^{2} (g_{0}^{2}, \xi - L) d (g_{0}^{2}, \xi - L)$$
(2)
$$= g_{c}^{2} \alpha_{c}^{2} (g_{c}^{2}, \xi) \beta_{c}^{2} (g_{c}^{3}, \xi) d_{c} (g_{c}^{2}, \xi).$$

The second of Eqs. (2) is obtained from (1) and from the relation between the renormalized and nonrenormalized coupling constants. From Eq. (2) it is seen that the effective coupling constant g may be considered either a function of g_0^2 and $\xi - L$, or of g_c^2 and ξ .

The final formulation consists of the assertion that the logarithmic derivatives of α and α_C , etc., with respect to ξ , which are equal according to Eq. (1), depend on one variable, namely, on the effective coupling constant

$$\alpha' / \alpha = \alpha'_c / \alpha_c = F_1 (g^2); \quad \beta' / \beta = \beta'_c / \beta_c = F_2 (g^2); \quad (3)$$
$$d' / d = d'_c / d_c = F_3 (g^2);$$
$$(g^2)' / g^2 = 2F_1 (g^2) + 2F_2 (g^2) + F_3 (g^2)$$

The primes here denote differentiation with respect to the arguments $\xi - L$ or ξ , whichever is appropriate. The last of Eqs. (3) follows from the first three and Eq. (2). As an example, let us prove the first of the equations. According to Eq. (2), ξ