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On the basis of Vonsovskii’s polar model of crystals several questions in the theory of
absorption of light and the theory of photoconductivity in atomic semiconductors are examined,
taking excitons into account. We consider terms of third order in the Hamiltonian, which de-
termine the probability of different transitions among the elementary forms of excitation;

this allows an examination of the kinetics of photoconductivity.

1. INTRODUCTION

THE polar model of crystals was proposed in
1934 by Shubin and Vonsovskii®. In this
model the semiconductor inthe normal state is
considered as an ideal monocrystal, at the lattice
sites of which are atoms with one valence S-
electron. In the excited state sites can occur at
which there are two electrons, and correspondingly,
empty sites. The appearance of this type of ex-
cited state causes its electrical conductivity. Ac-
tually, on account of the translational symmetry,
the states of the sites in which there are two elec-
trons (or, respectively, none) can propagate
through the crystal, which leads to the appearance
of degenerate states. Since each state with
definite sites occupied by two electrons, or with
empty sites, is quasi-stationary, we obtain a whole
band of energy levels. In this way the energy spec-
trum of an atomic semiconductor, fromthe point of
view of the polar model, can even be continuous;
but since the excitation of states with double and
empty sites requires an expenditure of energy,
the excitation of current states in the crystal re-
quires a known activation energy, inspite of the
existence of the continous spectrum. Thus, for

example, if one considersthe exchange interaction
between the electrons, the energy spectrum of the
crystal has the formshown in Fig. 1, from which it
can be seen that the conduction states occurring
in the upper band, overlapping the lower one (due
to the exchange interaction ), require an activation
energy for their excitation.

Fic. 1. 1—Nonconduction band; 2 - Conduction
band.

It is known? that an energy spectrum of this
form (for weak excitation of the crystal) can be
regarded as the energy spectrum of a system of non-
interacting quasi-particles. In particular, the
branch of the energy spectrum corresponding to the
existence of conduction states in the crystal can
be considered as the energy spectrum of a collec-
tion of positively charged (holes) and negatively
charged (doublets) quasi-particles.



482

Besides the types of excitation of the crystal
mentioned above there are states possible in
which the electron in one or several atoms is found
in an excited state. To such states, on account of
translational degeneracy, there also corresponds a
definite energy band. The corresponding quasi-
particles are called Frenkel excitons. It isnot
difficult to show by a simple calculation (this, by
the way, is also obvious physically) that the
Frenkel excitons forni currentless states (i.e.,
these quasi-particles are electrically neutral).

In what follows we shall neglect the exchange
energy. This leads to the result that the lower
energy band of the spectrun represented in Fig.

1 and corresponding to the currentless states degen-
erates into a single energy level, separated by a
gap from the band of excited states. Assuming that
the excitation energy of the excitons is greater

than the excitation energy of the conduction states,
we obtain an overlapping (in the upper part ) of the
exciton energy band and the energy band corre-
sponding to the conduction states (Fig. 2).

F1G. 2. 1—Nonconducting state; 2— Conduction
band; 3 — Exciton band.

2. THE HAMILTONIAN OF AN ATOMIC
SEMICONDUCTOR ON THE POLAR MODEL

We shall introduce the basic features of the
derivation of the Hamiltonian for the polar model
of semiconductors and analyze the physical mean-
ing of the results obtained.

We shall proceed fromthe well-known representa-
tion of the Hamiltonian in terms of quantized wave
functions:

H = \‘» (x) H (x)¥'(x) dx

T G

J

r—r W)W (vydxdy,

w7t DG (=R,

73

2m

H(x) = — (2.2)

is the Hamiltonian of an electron moving in the
force field of all the ions; G (|r—R |) is the
q

potential of an ion located at site g;
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G(r—r')=e*/|[r—1] (2.3)
is the potential energy of interaction of two elec-
trons. The quantized wave functions have the form

¥ = Dah 0 ) = Sapy v, 2V
i k

where az, a, are the usual operators of the second
quantization for the electrons (Fernii amplitudes),
¥, (x) is a complete orthogonalized system of
functions; the summation is taken over all possi-
ble states of the electron. Substituting (2.4) into
(2.1) we obtain the well-known expression for the
Hamiltonian of a system of electrons in terms of

Fernii operators

H=2{k|H|aaq, (2.5)

il

' 3

-+

]

-
}__, (R G| ps) afarau,.
kips ; S

The matrix elements are determined by the ex-

pressions
1D =\5 () Hx)y x)ds, (26
(kL) G| ps) 2.7)

=\ 9 (NG r— )b, (1) 9 () di .

In the polar model of atomic semiconductors one
proceeds fromthe following approximation. The
operator (2.5) is taken as being the Hamiltonian,
but in calculating the n.atrix elements,the atomic
wave functions, i.e., the wave functions of the
isolated aton:s, are used. Here, if it is necessary
to consider the existence of exciton states, not
only the wave functions of the nornial state but
also the wave functions of the first excited state
are taken into account. This systeni of functions
is not complete.

Furtherniore, functions referring to different
atoms are nonorthogonal. In this way, strictly
speaking, the expression for the Hamiltonian (2.5),
computed by use of atomic functions, is inexact.
However, considering that the wave functions of
different atoms overlap weakly, their nonortho-
gonality is neglected in the polar theory of semi-
conductors. It would be more nearly correct to
orthogonalize the system of atomic wave functions
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by the method of BogoliubovS; however, this will
not be done in this work. We should have acomplete
system of functions if we considered all possible

excited states of the atoms. The incompleteness
of the system of functions used apparently does not
have any essential significance in the majority
of cases.
Thus we put

q)k (x) = 9 (r— Rq) U, (3)s (2.8)
where i = 0 corresponds tothe ground state, i = 1
to the excited state of the atom, u, (0) is the spin
function [ in Egs. (2.1)-(2.7) we understand by x
the collection of space and spin-coordinates] .
Calculating the matrix elenients by means of such
functions and substituting them into (2.5) we ob-
tain, after summing over spins,

H = 2 H‘Ixiﬁ q: a—;—

.ar. a_ .
Tz {111S g2i28

(2.9)

+i21. oLooLar.an a4,
2 Quin Qains Qalas Quis G1ixS GolsS’ aias' ¢sisS’

(2.10)

{4 —RYH (e, —R,)d=

11} G2z

LH (r) in fact coincides with H (x), since the spin
variables do not enter intothe last expression J.

(2.11)

Ifllix; G2in; Gsls; Gala
—_ X & L E r
=\ei(r—R,) 7", (" —R,)

XG(ir_rl‘)Cpi;(r-_'qu)?[‘(rl—Rq‘)deﬂ:’-

+

As is well known, the Fermi operators o his

and a,;, act on wave functions, the arguments of

which are the occupation numbers of the electronic
states C (nqis ). In the polar model the states of

the crystal are characterized by the states of the
lattice sites. Let us introduce the symbols

1 when one electron with a right-hand spin
is at site ¢,

0 in all remaining cases
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and analogously, L for an electron with a left-
hand spin, E: for an empty site, £7 for a site

with two electrons, Eé and E§ for an excited elec-

tron with left- and rigvht-hand spins, respectively.
Clearly, the equation

Ry+Lo+Ef +E; +EX+Ef=1 (219

must be satisfied. The quantities Rq, Lq, E;r can

be taken as the dynamical variables of our system,
having the meaning of the corresponding occupation
numbers. The wave functions then must be con-
sidered as functions of these variables.

Let us introduce the operators of the second
quantization corresponding to these variables:
g Xg ¥ @ & 9, (and those associated with

them) act respectively on the variables Rq, Lq, E;,
£ EI:, Elé Following Shubin and Vonsovskii®

we assume that these operators obey the Bose
commutation relations.

For the transformation of the Hamiltonian (2.9)
to these operators, we proceed in the following
way. We designate by CO =C(1,0;1,0; 1, 0;...)
the wave function of the ‘“zero-order’’ state (one
electron with a left-hand spin on each atom). Then
a function of the form

(2.13)

C=HC§ia}’;H C*,}la;*[ls(...; 1,0;...)C,

i=1 le=l

—e(Fye v fs3 G- - Gsi Taee e T Moo Ba)

S u
X1 Caat IT CHlyaiC,

ie=1 leq

corresponds to the state of the crystal in which at

sites fl’ .. . f, there are two electrons each (with
opposite spins), the sites g1+ - - - 85 are empty,
at the sites kl, e hn there is one electron with

a right-hand spin, and at the remaining sites

LTI there is one electron with a left-hand
. _ o+ ot gt
-spln. Here Cgi = Ay s 9, afi,%. The
function (
) . 2.14)
e (fie-. fs3 G- -- Q3 Tae - T3 By Fin)
L R.
=c(...; g, Ngs---)
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is symmetric in the indices r or & separately and
antisymmetric in the indices f or g.

Noting that C (. . . Mg Mys e D=D(...,R
+ p— R pL . - .
Lq, Eq, Eq R Eq, Eq, .. .), it is possible to re-

late uniquely the result of the action of the Bose
operators on the function D to the result of the
action of the Fermi operator on the function C.

»

q

Thus, for example, it is easy to convince oneself
that to the operator a‘;Cqua o’ corresponds the

+ +
operator ¢ & O -y .

Omitting all these transformations, we write
down immediately the expression for the Hamil-

tonian in Bose operators without taking into ac-
count the excited states of the atom, which is con-
siderably simpler than the complete Hamiltonian,
and we show by this example which simplifications
are to be used in the sequel. It must also be men-
tioned that the expression presented below for the
Hamiltonian already contains a series of simplifi-
cations, inasumch as terms were discarded which
correspond to the simultaneous transition of two

or more electrons (the integrals corresponding to
such transitions are considerably smaller than the
remaining terms ). Therefore, for the Hamiltonian
in the polar model (without taking into account
exciton states ) we obtain the well-known Hamil-
tonian of Vonsovskiil

H=1/,(A+D) Z(‘Fﬂ;‘l"q +otD,) (2.15)
+/2>\Bag (¥3 ¥ =0 0) (P ¥ o—DFD,)
+ e Yoy (REF—FFOF) (0¥ ) —¥ Dy )
— s 2 Log (ijflp.q‘f‘@j‘pq) (‘FIJF’IFq"l‘ (D;F'q)q’)
22 2 (e — b 02, — 1,2,)

2 D) Low (9495 + 1atd)(@F Dy — 43¥,)

+ (097 + 1oks) (DI, —WFT )]

+ o D\ Lag U(@arer — 1400) (PF Y

— @4 gL) -+ (‘1”3—}(:1'7 - Xj‘?;;’) (q)q‘Fq’ -qu’q’)]

(the summations are over all indices g, ¢”).
In what follows we shall examine cases in
which the number of excitations is small; in other
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words, in which at the majority of lattice sites
simple atoms with right- and left-hand spins occur,
whereby both directions of spin are considered

equally probable.Therefore, cp;' ¢, ~ 1/2 and X: Xq

~ 1/2, where the bar designates the average value.
Since the number of simple atons is considerably
larger than the number of empty and double sites,
we can neglect the changes of state of the collec-
tion of simple atoms in the occurrence of these

and other excitations; and we can consider this
collection of simple atoms as a classical system, a
special reservoir, fromwhich can arise empty and
double sites, but the states of which donot change
thereby. This is somewhat analogous, on the one
hand, to the introduction of a thermostat in the
derivation of the Gibbs distribution; or, onthe
other hand, it is analogous tothe classical repre-
sentation of radiation of great intensity in the
quantum representation of the absorbing atom. In
the latter case the radiation is considered classi-
cally and is described by commuting quantities.
Analogously, in our case, considering the collec-

tion of simple atoms as a classical system, we can
consider operators referring to the simple atoms as
commuting quantities, and in correspondence with
this we put
ot = o
g q

(2.16)

Hence, the Hamiltonian (2.15) simplifies and takes
the following form:

H=1/y(A+D) D (FFF,+0,D,) (2.17)

41y DBoy (FTE 0y 0g) (Wi gDy
Yy Dy g (0 Wy — B F D) (O, — D)
Yy Dy (B + O O (FFW, + 0D,

+ 2o 2 Lag[®y 0 + 0T O F ¥ -

In this approximation the principal feature isthe
circumstance that the operators of creation and
annihilation of empty and double sites disappear,

so that in this approximation the average number

of the latter is an integral of the motion. Further,

an additional approximation occurs, which results

in the fact that in the operator (2.17) only terms
quadratic in the operators remain, i.e., the energy

of mutual interaction of the excitations is neglected,
considering the number of excitations small. Then
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in place of (2.17), we obtain

H =1/,(A + D) 2 (0, -+ bro,) (2.18)

+ /s Z Loy (9 @y (])j'(l),/ _1F;\} v — '),

The expression for the Hamiltonian, considering
the exciton states of the atoms and corresponding
to (2.15), is too cumbersome, and we shall not
present it here. Below is given the expression for
the Hamiltonian, taking into account the exciton
states, in the approximation corresponding to (2.18),
with, however, this difference: that in it are in-
cluded terms of the third order relative to the opera-
tors of second quantization:

H=Heg + Hy, (2.19)

€ . (2.20)
Hey = QW X (g + 83, )

+ QP R (¥ ¥+ 0] D,)
+ D Q5 (agoy + axf) + D QD (BB + B8
+ X Qf (¥; @ -+ 0f @)
— QR (FIT Y, );
(2.21)
Hg = 2 N.(f:I) [q’tj_".’f (g —Bq) + '*:’11'{)}{~ (“rj_ - 3;)]
+ DN IO Oy (2 — B,) + By 0F (2, — )
+ 2N ¥ OF (0 + Bp) 4 W, 0y (o + B7)]
+ ZN}?[G};—IF}'_(“!I_I— 8y + O,y (“;— + ﬂz}rﬁ)]
+ 2N BBy + ofw) (o + o — 3, — 37
-+ DN (8 —0F D)) (2, + aF—B,—B])],
Q and N are certain coefficients, the form of which

we shall not write down in the present article.

The operators u. , u.;r, ,8“;, /3:; are the operators

q
for the left-hand and right-hand excited sites
(exciton sites) which are connected with the
operators of the excited sites presented earlier
by the relations

« 1 -
3:]:(7%/”_0, .')+_’11} +L,

q T

(2.22)

- .t L
= 2¢— C, g = ;‘j'/ —q,
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where ¢ is a certain constant, chosen in a definite
way. It is necessary to carry out the transforma-
tion (2.22) in order that terms in the Hamiltonian
of first order relative to the operators disappear.
The physical meaning of the quadratic and third
order terms inthe operators is more easily ex-
plained after the transformation of the Hamil-
tonian to the space of quasi-momenta and the intro-
duction of the corresponding quasi-particles.

3. TRANSFORMATION TO THE SPACE
OF QUASI-MOMENTA

For the transition to the space of quasi-niomenta
we introduce the following canonical transforma-
tion:

¥, = N— 2 W e—i(k—=bR, -
k

(3.1)
DV, = N D) @e—ikR, ,
k
w, = N~ 23kg-i|(n(, ,
3

80 = N D Lpe=ikRy,
13

where b is a vector of the reciprocal lattice (and
analogously for those associated with it). Opera-
tors with the indices %, describing processes of
creation or annihilation of the corresponding quasi-
particles, satisfy the same commutation rules as
the operators with indices g. In the Fourier trans-
formation (3.1), the writing of (k — #b) in place

of k for the operator ¥ denotes that the subtraction
of the quasi-miomenta of the holes is carried out

from the upper edge of the band, and not fron: the
lower one, as is done for the doublets and ex-
citons. Thanks to this, we obtain a positive
effective mass for the holes.

After carrying out the transformation, we obtain

(3.2)
Hey = 2521717(: + ZE;ﬂf -+ ZEknk -+ ZEhn‘;f',
3 I k k

n
occupation numbers of the left-hand excitons, right-
hand excitons, doublets and holes. Inthis way the
Raniltonian (3.2) is presented in the form of the
sum of the energies of the elementary excitations.

+ ()
where n,? =d, J,n ‘;f, are operators for the

E/, E, have the meaning of the energies of the
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corresponding elementary excitations. In the ef-
fective-mass approximation they have the form

Er=AE + 12k 20, Ey = AE’ + 122 2y7(3.3)

where AE is the excitation energy of a doublet or
hole, AE’ is the energy of excitation of an exciton,
p is the effective mass of a doublet (hole), w’is
the effective mass of an exciton.

As far as the terms of third order are concerned,

after transformation to the space of quasi-momenta
we obtain

Hey = KO (k, k)3 (k'—k — k') (3.4)

X [FFW e (95— %) -+ W Wi (5 —C)]
4 IK® (k, k") (k' —k —K")
X (DD (9 — Ca) + D (9F — 6]
+ DK@ (k', K)o (K" 4+ K —=b— k)
X [P (9r+Ch) + P W (95 + 6]
+ K@ (k) & (k' —K” —K)
X Lo+ 959 0) (9 — Ca)
+ (@l 997) (95 — 9]

(summation over all indices). The form of the co-
efficients K‘*) is not given here on account of its
complexity.

4. ANALYSIS OF SEPARATE TERMS OF THIRD ORDER

The physical meaning of the separate terms of the
expression (3.4) can be easily explained directly
from the form of the operators. Thus, for example,
the term ‘I’:f‘ljk s+ ¢, corresponds to the annihila-

tion of a left-hand exciton with quasi-momentum k.
The energy of the exciton is thereby transferred to
a hole with quasi-momentum k”, as a result of
which the hole acquires a quasi-momentum k”. It
must be mentioned that this process proceeds with
conservation of momentum. The term associated
with this one, ‘Pkf‘P:» J ;:,corresponds to the in-

verse process, the process whereby a left-hand ex-
citon with quasi-momentum k arises at the expense
of the kinetic energy of a hole with quasi-momentum

k”. The hole as aresult of this process acquires
a quasi-momentum k. This process also ta(}(es

place with conservation of momentum, as, by the
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way, do all the remaining processes described by
the Hamiltonian (3.4).

Great interest attaches tothe terms of the Pamil-
tonian (3.4) containing the operators @, W, .. &,

and CDZ"PZU . These operators describe the

process of spontaneous annihilation of a right- or
left-hand excitonwith the quasi-momentum k, with
simultaneous formation of a doublet with quasi-
momentum k” and a hole with quasi-momentum k.

: + 5 +
The associated operators @, /¥, -~£ and (R

correspond to the inverse processes ---processes of
production of right-hand and left-hand excitons by
recombination of a hole and a doublet. The physi-
cal meaning of the remaining operators is also
clear from their individual forms.

The Hamiltonian H(3)

turbation of a system, the stationary state of
which is determined by the Hamiltonian #

can be regarded as the per-

(2) In
this way [1'(3) deternines the transitions between

the stationary states. The quantities K@) (k, k’,
k’’) determine the probabilities of the correspond-
ing transitions. The computation of these proba-
bilities will not be given in the present article;
however, it is already clear fromthe Hamiltonian
itself how, within the frame of the polar model of
atomic semiconductors, one can proceed to the ex-

amination of very detailed processes.

5. SOME REMARKS ON THE HAMILTONIAN OF AN
EXTERNAL PERTURBATION

Let U(r, t) represent the operator of an external
perturbation. We shall write down the Hamiltonian
of an external perturbation in terms of the quantized

wave functions

H = S\w () U (r, t)¥ (x)dx.

Substituting the quantized wave functions into this
and summing over spins we get

+ ~
H = EUfoﬁ(szz Qg,iys af!zizs ’ (01)

ere . .
wh Uq 181:92i 9

tor U(r, t) computed by means of the atomic wave
functions of the normal and first excited states,
where i = 0 corresponds to the ground state and
i =1 to the excited state. a', a arethe usual
Fermi operators of the second quantization for
creation and annihilation of the electron at the
corresponding site.

Let us examine some of the possible transitions--
in the first place, processes not connected with the

is the matrix element of the opera-
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generation of excitons. Obviously such processes
are described by a Hamiltonian of the form

— \" -~
HO == ‘/_,UQ’)O.' 20 [a[h OSa[]-gOS + at_/’;()saqlos]- (5.2)
01028

After changing to Bose operators we get in the
quasi-classical approximation

Hy= s 2 U o470 ((I’;/{A(I’f/’

qq’

(5.3)

4 DL, — W, —PIE,).

Therefore, as before, terms corresponding to the
creation and annihilation of doublets and holes dis-
appear in the quasi—classical approximation. From
this we immediately obtain the following import-
ant result. If the external perturbation is a light
wave, then holes and doublets cannot arise upon
absorption of the light, i.e., conduction states can-
not appear. Consequently, the absorption of light
in atomic semiconductors, from the point of view of
the proposed theory, is photoelectrically inactive
and bears a purely exciton character. If one gives
up the quasi-classical approximation, the creation
of holes and doublets will be possible; however,
the probability of this process will be very small
in comparison with the probability of exciton ab-
sorption.

As regards processes described by the Hamil-
tonian (5.3) in the case when the perturbation is a
light wave, this Hamiltonian then, as it is not
difficult to convince oneself, describes the Compton
scattering of light by free doublets and holes. In
what follows we shall not be interested in this
process.

In order to study the exciton mechanism for ab-
sorption of light, it is necessary to put ¢, = g,,
i,=0,i, =1 into (5.1); then we obtain

’ %l -+
Hy = }J[Uqlqo Qq1sQy0s ~+

ys

U yom auos Qps 1 (5.4)

Since the matrix element 0, 140 is computed by

use of real functions, [/ =U .
q0q1 91499

to Bose operators and to the quasi-classical approxi-

Going over

mation, we get

Hiyy =27 DU grgo () +

q

%)

(5.5)

—27 2 Ugiao (87 + By).
7

q
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In the Hamiltonian (5.1) are contained terms de-
scribing even more complicated processes, for ex-
ample, the simultaneous absorption of light with
the excitation of an exciton and scattering by
holes, etc. However, all these processes have a
considerably smaller probability, and in the sequel
we shall not consider them either. Here we only
remark that from this theory arises the possibility
of processes, whereby a light wave causes the an-
nihilation of excitons already existing in the crys-
tal with formation of holes and doublets, which
leads to an additional conductivity of the crystal.

If the external perturbation is a static one, for
example, the force field of an impurity atom, the
latter can also cause a series of transitions be-
tween states with the same initial and final energy,
for example, the decay of excitons with forniation
of holes and electrons, etc. The corresponding
Harmiltonian can also be obtained from (5.1).

Going over to the DBose operators (and to the
quasi-classical approximation) we obtain, after the
corresponding transforniati ons,

Hyy =27 EU g1q0 (g + “r}L - Bj — By) (5.6)

+1,% Uj"oqo (C{);"(pf -+ ‘-T’}F‘I)q—‘lf'j”l}——11”_‘,!*‘1"0)
27D U [y — o0 Wt (5 — o4 0)

N o oyt o+
9=ty Usigo 1(354- of) WD, - (5 +af )ED,].

After the transition to the space of quasi-monienta,
it is easy to explain the meaning of each term of
the Hamiltonian (5.6). Thus for example, the first
term of the Hamiltonian gives those transitions in
which the law of conservation of energy cannot be
satisfied (they can be considered as virtual transi-
tions). Therefore, in considering processes of
interaction and transforn:ation of quasi-particles
into each other this tern: can be discarded. The
second term of the I}an.iltonian (5.6) describes the
scattering of holes and doublets fromthe iripurity
site. The quasi-momentun: of the doublet or hole
in such a process takes on a different value after
scattering.

The third term of (5.6) describes the process of
annihilation of a right-hand or left-hand exciton at
the impurities with transfer of their energy already
existing in the crystal to the hole, and the inverse
process of the creation of a right- or left-hand
exciton  at the expense of the kinetic energy of
a hole. The analogous process with doublets is
impossible, since in this case a two-electron
transition would be necessary, which cannot be
produced by a static field. From this it follows
that that part of the n.obility which is caused by
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the presence of impurities will be different for
holes and doublets in exciton semiconductors.
Finally, the fourth tern: of the Fan:iltonian (5.6)
describes the process of decay of aright- or left-
hand exciton at an impurity site into a doublet and
a hole, and the inverse process of formation of a
right- or left-hand exciton at the expense of re-
combination of a hole and a doublet at the impurity

site.

6. DERIVATION OF AN EXPRESSION FOR THE
PROBABILITY OF DECAY OF AN EXCITON AT AN
IMPURITY WITH FORMATION OF A DOUBLET AND A

HOLE

Let us consider the decay of an exciton (for
example, a left-hand one) at the site of an im-
purity. We locate the origin of coordinates at this
site. From (5.6) it followsthat the energy opera-
tor of the perturbation K has the form

K=2""58Uqno ¥ 0 . (6.1)
Let U(r) be the perturbing potential of the im-
purity; then

Upgo = (o1 (r —R) U (1) 20 (r — Ry d=. (6.2)

Substituting (6.2) into (6.1) and going over to
momentum space we get

K = (222 N~V 2) D 9.9 o 6.3)

«BY

XU (| Ky -+ Ky—Ko — =b )
X9 (kB — k. — Tb) %o (k-{),

where ¢, and g, are the atonic functions in mo-
mentun, space, and U is the Fourier coniponent of
the potential, deterniined by the expression

=1V, U etk tkotamoe

where VO is the volume associated with one aton:.

The transition probability can be conputed ac-
cording tothe familiar forn,ula

© = (2= / k) g | Ko P8 (E;— Eo)dy,  (6.5)

where K’\# is the matrix element of the operator

(6.3) for the transition between states A - p (ex-
citon » doublet plus hole), and the integration is
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carried out over all possible finite states. We
note that in the case at hand, the law of conserva-
tion of momentum is not satisfied, since the decay
of the exciton takes place in the force field of the
impurity. The law of conservation of energy is

taken into account by the §-function in Eq. (6.5).
Calculating the values of the matrix elements of
the operator Uu‘l’ﬁ (I); , stipulating that there is

one exciton present and paying attention to the
fact that the average occupation number of holes
and doublets is << 1, we get from Eq. (6.5)

w = (::/hN)S("?x (ke

XU?(ky + kg —k, —=b )
XO(E— 2 — =) dkdke,

Kz —7b) 2], (k) # (6-6)

where E_ is the exciton energy, e3 and €, Te-

spectively, the energy of the hole and the doublet.

Changing to spherical coordinates in this expres-
sion, and carrying out the integration over angles,
we get

" .
’m"ud 6.7)

© = o | o9 (£

0

k(3+7‘

X {awe
Jhg—x!

k:‘,+y
S 2U*(2) dzdy dk,,
lk:,av.’

’

k. = V2 — k3

=V (2uq/h) (hv — A); »=|Ks + D]

In Eq. (6.7) ¢, (y) represents only the radial part
of the wave functions; an averaging has been car-
ried out over the angular part.

If there are few sites of the impurity in the crys-
tal, then the action of each on the excitons will be
the same as though there were no other impurity
sites. The probability of decay of an exciton in
such a crystal into a doublet and a hole will be
equal to w = Nimpl’y'", where Nimp is the nun:ber of
impurity sites in the crystal. From (6.7) it follows
that f = 1/, therefore, w =~ Nimp’/N' In this

way the probability of decay of an exciton in the
crystal into a doublet and a hole is directly pro-
portional tothe concentration of impurities. Fron
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this it follows that the photoconductivity of an
atomic semiconductor, caused by an impurity, is
directly proportional tothe concentration of im-
purities. If the probability of spontaneous decay
of an exciton is small, then we shall have prin-
cipally impurity photoconductivity.

The effective cross section can be computed by
the formula given by Sokolov and Ivanenko*:

6 = wV [v,, (6.8)

where v, is the velocity of the exciton. Using the
law of conservation of momentuni, we obtain

v, = AEe [ - (6.9)
Consequently,
L 4y pcV (6.10)
T TRMAEN
o kg kit

XS kg [ %o (Ry) [ g le(y) 2 S 2U2(z)dzdy dk,.
0 lka——x Ih;~yj
As an example of the application of Eq. (6.10),

we consider the decay of an exciton at an empty

site. In this case the perturbing potential can be
set equal to the potential of anisolated atom (with
the opposite sign ). Therefore, we put

As 10° 100
Ap 3x10° 2x10°
6(cm2) 4x]0-1¢ 3x10-15

This shows that ¢ is very sensitive tothe be-
havior of the wave functions and that for an ac-
tual calculation of o it is necessary to know the
exact atomic wave functions in momentum space.

The existing methods for computing atomic func-
tions (the Hartley-Fock method, the variational
miethod ) allow one to conipute the atomic functions
in configuration space. The analogous problem in
momentum space is still not solved; therefore, we
cannot exhibit numerical values for o for concrete
cases. However, the result obtained shows that the
exciton can decay at an impurity with formation of
charge carriers even inthe case when the siteis
empty, i.e., does not contain bound charges in it.

7. KINETICS OF PHOTOCONDUCTIVITY

As was explained in Secs. 5 and 6, the third-
order terms in the Hamiltonian of the polar model
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(6.11)

U(r) = %E__ezgfﬂ”)_dl’_

lrll — rl ’
where p(r) is the density of the distribution of
electrons. Let us take

o(r)=(27®/8=)e1". (6.12)

For the rest of the calculation it is necessary
to choose definite wave functions. For the evalua-
tion we choose for ¢, the wave function of a hydro-
gen atom in the 25 state, and for g, that of the
3p state®. The wave function ¢, was averaged
over angles in the following way. Since p-states
are triply degenerate, cp% can be set equal to

Lo P =Yy (2" P+ 22+ 1P ),

(6.13)

where ‘fi cp%, :p:’i are the three actual functions for

the p-state.
Substituting the wave functions and (6.11) into
(6.10) we obtain
2‘-’“351120uduee4z’3n
RSAE DS

at (a2 + %?)

(@ v

(6.14)

Determination of the numerical value shows that
o changes within unusually wide limits in its de-
pendence on the choice of the effective charges
for the s- and p-states. The results of such an
evaluation, as the parameters )\p and A _ are

changed, are as follows:

%108 5x108
2>40° 3x10°
2.5%10-14 3x10-15

of an atomic semiconductor determine the proba-
bilities of different processes of transformation of
certain quasi-particles into others. Furthermore, the
theory permits us to calculate the probability of
formation of excitons under the action of incident
light. This gives the probability, knowing the
matrix elements of the corresponding transitions,

of writing down the kinetic equations®, but in the
present work the interaction of quasi-particles with
phonons will not be considered. Moreover, this
interaction is essential for the study of kinetics

in semiconductors, since without consideration of
the recombination of holes and doublets with radia-
tion of phonons it is impossible to obtain reason-
able equations of kinetics, leading to a correct
value of the number of quasi-particles instationary
states. Therefore, the equations of macrokineties
for holes and doublets are supplemented by
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phenomenological terms taking into account the
thermal recombination of holes and doublets.

It is postulated that the energy of excitation of
excitons is much larger than the excitation energy
of holes and doublets; thus in the first approxima-
tion it is possible to assume that, in contrast with

doublets and holes, thermal excitons do not exist.
The equations of macrokinetics have the form

dM’ ] dt =1Q — 2¢MM’, (7.1)

dL’ [dt = 0Q — 27 M,L",
dQ /dt = 2wen. + (w, + 1) Q,

where }/” is the nunber of L J, photo-holes /of photo-
doublets, Q of excitons (right- and left-hand), 7
of thermal holes, y the recombination coefficient
of holes and doublets, n_ the number of photons,
w,, the absorption coefficient of a photon, A the
coefficient of the probability of decay of an ex-
citon into a doublet and a hole (at an impurity
atom or spontaneously).

Solving the system of Egs. (7.1) we obtain

. (@) ¢
M =M1 +

(7.2)
. (@R /2yM, — 1

e—;’.‘(M.,t ]
+ 2YM, [ (@, +2) —1 |
L' =M, Q=0,,,[l —e (@1,
M, 0y = Wolta [ TM, (0, - 1); (7.3)

stat
Qstat = 2&'0’21 /(wo -+ }\)

The dependence on temperature enters only into
Mg, iy~ e_AE/2kT, where AL is the energy gap
between the currentless states of the crystal and
the conduction band. From (7.2) it followsthat the
number of excitons in the crystal, as one was led
to expect, does not depend on temperature. As re-
rards the kinetics of photo-holes, the following
limiting cases can occur:

a) W, + 2> 29M,, (7.4)

then M’ = Ms’mt (1—e™ 2*(/11,1),

b) @y +- A L 27M,, (7.5)

A 47 —(wo+A) ¢
then M’ =3, (1 —¢ ).

S
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With increasing temperature the nuniber of thermal
holes M increases and, consequently, the thermal

conductivity increases, while the stationary value
of the photoconductivity will decrease with increase
of temperature,

AE|2RT

Ao,  ~e¢ (7.6)

stat

This results fromthe fact that with the increase of
temperature the recombination of photo-holes with
doublets ( and photo-doublets with holes) proceeds
more intensively.

As was shown by Zhuze and Ryvkin7, the

stationary concentration of carriers of photocurrent
can be represented inthe form of a product of a
set of parameters

Angpa = ThBI, (7.7)
where 7 is the lifetime of the carriers of photo-
current, & the coefficient of absorption, / the in-
tensity of the light, and 8 the coefficient of the
photoeffect which, if / is measured by the nunber
of quanta falling per second on a unit surface area,
has the sense of the ““quantum yield”’.

The photoconductivity is determined by the
formula

Ao

stat

= eulu

stat’

(7.8)

where e is the electronic charge, u is the mobility
of the carriers of photocurrent. The number of

quanta absorbed per second in a unit volume is
equal to kI = ?.won ; therefore,
=3

Anstat = M, = 25'5&'0,24.

stat

(7.9)

From Egs. (7.3) and (7.9) we obtain for the quantum
yield

B=1/27xM, (@, + A). (7.10)

Let us consider two limiting cases:

a) Wy +A>>2yM , then from (7.4) and (7.10)we

have
< = 1/@yMy), B=1/ (@, + 1);

b) w, + A <L 2yMO, then from (7.5) and (7.10) we

have
s=1/(wy+ 1), B=21/21M,.

Let us now write out the temperature depend-

ence of Ag 7, and B in both limiting cases:

stat’
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El2 AE|2RT
a) Ao~ eAERRT o eBFIRT g const;
2k T AE2RT
b) Ao cat e FIRRT o _ const, B~ e

All the reasoning carried out up tothis time is
valid for sufficiently high temperatures (} << ).
As regards the region of low temperatures,here it is
already impossible to assume /<< M,. This
introduces changes into the kinetic equations. In
particular, the first of the Kgs. (7.1) ceases to be
linear and takes the form

aM'jdt =2Q — 2¢M M’ — M. (7.11)
The solution of this equation can be expressed in
Bessel functions of order

2 212 L 0w wo"f*‘)\]’lz
P—W[T Mo+ 27 555 -
Naturally it is difficult to say anything definite
about the behavior of the solution; therefore, in the
case of low temperatures, we have limited our-
selves to finding the stationary value of #/”. In
this case

M’

v [2wyrtah [ 7 (@, + )\)]""2 = const. (7.12)
st al

Since ¥~ ~
stat

Ao

stap’ V€ obtained the result that
at low temperatures the stationary photoconductivity
does not depend on the temperature.

For the limiting case b) we know no experimental
data supporting the temperature variation of7 and 3
in this case. It is possible that this case is not
realized.

If one compares the temperature variation of
Ao, . Tand B in case a) with experimental

data for copper oxide, obtained by Zhuze and
Ryvkin®, in the region of sufficiently high
temperatures (7 > —40°) one gets complete agree-
ment with the temperature variation of Ao, ., 7 and
B obtained experimentally. As regards the region
of low temperatures, the temperature variation of
A, ., agrees well with the experimental data. To
say anything definite about the temperature varia-
tion of the lifetime 7 and the quantum yield 8 in
the case of low temperatures is hardly possible;
but since the predictions of the present theory
differ fromthose of the theory of Zhuze and Ryv-
kin, it is hardly possible to obtain the same temper-
ature dependence for 7 and /3 as obtained by them.
In the first place, these authors consider thatthe
photoconductivity remains linear even at low
temperatures; in the second place, they consider
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that the decay of an exciton takes place at defects,
in which are found electrons removed from: the
normal band, whereby upon the decay of an ex-
citon the electron is thrown back fronithe defect
to the conduction band®, Thus the number of
‘“effective’’ decay centers depends on the tempera-
ture, and their states does not change upon the
decay of an exciton (e n:pty sites). Apparently
this difference must lead to another temperature
dependence of the quantum yield in the region of
low temperatures.

We must also mention that copper oxide does not

belong to the atomic semiconductors which are
considered in the present theory; however, it is

entirely possible that the dependences proposed
by Zhuze and Ryvkin are of general character.
Therefore, at sufficiently high temperatures, the

expression for the stationary photoconductivity
created by holes has the form

Ao, = teukl | 2¢Mg (w, + 1.). (7.13)
At low temperatures the formula
Aastat = ().k])llz eu / Tilz (w() + ;\)1]2 (714)

holds.

Analogous expressions can also be written down
for the photoconductivity caused by doublets.
However, the hole photocurrent can have a differ-
ent value fronithat of the doublet photocurrent, if
there is a different mobility for doublets and for

holes.
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