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(if we neglect the improbable possibility of a 
chance coincidence) the correctness of Gatto's 
hypothesis and will make it possible to draw 
definite conclusions about the spin and parity of 
the ~-hyperon. 

I wish to express my sincere gratitude to I. lu. 
Kobzarev for interesting and useful discussions 
and to Prof. I. Ia. Pomeranchuk for the interest 
shown by him in this work. 

Note added in proof. After this article was submitted, 
the author learned of the work in Refs. 4-6 in which the 
essentials of the above results are contained. In addi
tion to this, preliminary experimental results were 
announced at the Sixth Rochester Conference which 
indicated that the magnitude of X was near to 1, and 
that of Y near to 0.1 -0.2. As is evident from the 
Figure, these data agree with the assumption that 
~ T = l/2. 
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and longitudinal vibrations. We so normalize the 
normal coordinates that, for any transverse or longi
tudinal vibration, the Hamiltonian has the form 
~ (q 2 + n 2 q 2 ), where n . is the eigenfrequency 

I I 
of the corresponding transverse vibration (D ..L j ) 

or longitudinal vibration (Q 11 j ); j is the branch 

number of the dispersion. Each normal vibration 
gives rise, in the crystal, to an inertial polariza
tion, i.e., to a polarization due to the displace
ment of the ions and to the electron polarization 
produced by the displacement of the ions in the 
absence of an external field. The inertial polari
zation dipole moment density p (r, t) varies sinu
soidally in space, and its amplitude p 0 (t) is 

proportional to q. Let p 0 = u.J... j q for the trans

verse vibration and p 0 = u.l{ j q for the longitudinal 

vibration. The relation between the parameters 
n . u. . for transverse and longitudinal vibrations 

I ' I 
is derived below. 

Let us consider the forced vibrations of ions 
produced by an external electric field ~ (r, t ). This 
field is chosen as a plane sinusoidal standing 
wave, vibrating harmonically in time with a fre
quency w . Assuming that the interaction energy 
per unit volume of the crystal is equal to -~, 
we get for the dipole moment de::;nity due to forced 
vibrations: 

s 

p = ~ C$C~.J I (D.j- w2), 
i=l 

(l) 

'where s is the number of ions in the elementary cell 
of the crystal, minus one. The total polarization 
dipole moment due to the external field is P=p+p 

e 
where p e is the additional non-inertial polarization 

dipole moment due to the direct effect of the ex
ternal field on the electron shells, the positions 
of the ions being held fixed. Let us consider two 
cases: 

L ET us consider vibrations with wavelengths l) The external field is transverse and div P=-0, 
much larger than the lattice constant, hut i.e., the fictitious charges of dielectric polariza-

smaller than c/ J/"" I0- 3 em. ( J/ is the characteris- tion and their corresponding fields do not arise. 
tic frequency for infrared dispersion in the crystal). In this case the external field ~ coincides with 
The latter assumption enables us to treat the the field E of macroscopical electrodynamics, and 
electromagnetic field created by the vibrating ions p e = E (n 2 -1) / 4rr , where n is the index of refrac-

as electrostatic, i.e., to neglect the retard~tio.n tion for light in the crystal, in the plateau region 
effects as well as the effect of the magnetic held. 1 ' 2 of the dispersion curve- between the region of 
For this range of wavelengths one can also neg- electronic absorption and the region where the 
lect the dispersion of the vibration eigenfrequen- absorption of infrared light by the vibration of the 
cies. ions takes place. We.get 

In isotropically polarizable ionic ~cubic) crystals, 
the polarization vibrations separate mto transverse 
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( 
s IX1· n2 -1) 

P = P + Pe = ~ 112 . _!_ 6)2 + ~ E. (2) 
i=l ..li 

Identifying this formula with the formula of phenome
nological electrodynamics: P= [ E -1] E/ 4rr we 
get: 

s 

e ((}))I n2 = 1 + ~ a_.Li I (11li- 6)2), 

i=l 
(3) 

In particular, if E is the field of the light wave (3) is 
the usual dispersion formula in the infrared region. 

2)The external field is longitudinal. In this 
case the curls of the vectors p and p e vanish, but 

their divergences do not. The field of the fictitious 
charge of dielectric polarization is -4rr P. It 
follows that the total macroscopic field is equal to 
E= {£-4rrP, i.e., the external field(£ coincides 
with the displacement of macroscopical electro
dynamics. Then p = D (n 2 -1) /4rr n 2 and 

e 

P = ( ~ 2 C(ll i 2 + n2 -21)' D. (4) 
.LJ 11 II . - (J) 41t"n 
J=! I 

Identifying this formula with the formula of pneo
menological electrodynamics P= [E -1 J D/ 4rrt:, 
we get a "dispersion formula" for the longitudinal 

waves: 

(5) 

- 4 2 2 a II i - rrn IX II i" 

E (w) should be the same in both cases, because 
the coefficient of proportionality between P and E 
should not depend on whether the fictitiou.s dielec
tric polarization charges affect or do not affect the 
state of the field E. Identifying the expressions of 
n2 / E from (5) and (3), we obtain the desired rela

tion between tlte parameters nil j ' (),1( j and n l. j • 

In practice this is achieved most easily by con
sidering the reciprocal of (3) as a rational fraction 
with respect to the variable w 2 : 

where 

s 

II= ll c11~u -6)2); r{ = c11~u- 6) 2) ••• 

i=l 

After having expressed this fraction in elementary 
fractions one has to identify each partial fraction 
with the corresponding term of the sum in the 
right hand side of (5). 

A useful additional relation may be obtained 
by setting w = 0 in (3): 

s 

eo n2 = 1 + ] a iiI 111i• 
i=l 

where t: 0 is the static dielectric constant. 

(7) 

In the simplest case , when the number of ions 
in the elemenatry cell is two, s = 1 and the ex
pansion (6) in partial fractions has the form: 

Identifying this expression with (5) we get a u=a ..l 

and n ~~ = nl +a 1. and it follows from (7) that 

a..L= Di ( E 0 n- 2 -1 ). Therefore: 

IXII=~X..l/n2, 1111=113_eofn2. (8) 

In the case of a three ion cell, s = 2, and the 
expansion (6) in elementary fractions and the 
identification of the result with (5) give 

a Ill= [a .1_1 (113_2- 11,11) 
(9) 

+a .1_2 C1111- 11111)]1 C11ll2- 11~11) 

=- C11l1- 11l11) C11J 2- 11111l I C11112- 11111), 

a II 2 =- (11l1- 11112) C11l2- 11112) I C111ll- 11112), 

where Of1 1 and Of1 2 are the roots of the quad

ratic equation 

(1111- 6)2) (113_2- 6)2) +a ..l1 (113_2- 6)2) 

where the unknown is w 2 • The quantities u.~ . 
I 

and u..~ 1 j can be expressed easily through 

a..Lj and a 11 j using Eqs. (3) and (5). 

In the case when the clcr...cntary cell consists 
of a large number of ions, one has to solve a higher 
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order equation in w 2 • This is possible when the 
parameters of the transverse (longitudinal ) vibra
tions are given numerically. The experimental 
determination of the parameters for the transverse 
vibrations can he made, for instance, by approxi
mating through (3) the experimental dispersion 
curve for infrared light. 

The relation between Q 11 and OJ... in the simplest 
particular case of two ions per cell, has been 
considered in earlier publications. It seems that 
Ref. 3 reports wrong relations. The relation (8) 
was derived for the first time in Ref. 4; it has 
later been derived by Tolpygo 1 and Callen5 on 
the basis of the microtheory of ionic crystals; 
Huang 2 has derived it using the macroscopical 
electromagnetic theory. 

In the case of an anisotropic crystal, if the 
orientation of one of its principal axes of polari
zation does not depend on the frequency (be
cause of the symmetry of the crystal) the relation 
derived above between the parameters of longi
tudinal and transverse waves still hold for a 
longitudinal wave travelling along the said axis, 
and for a transverse wave travelling in a perpendi
cular direction and polarized along the principal 
axis. If the wave travels in an arbitrary direction 
it is, generally speaking, neither longitudinal nor 
transverse, and the relations derived above need 
a basic generalization. 

The authors express their gratitude to L. D. 
Landau for his valuable remarks. 

1 
K. B. Tolpygo, ]. Exptl. Theoret. Phys. (U.S.S.R.) 

20, 497 (1950). 
2 K. Huang, Proc. Roy. Soc. (London)A208, 352 (1951). 
3 
N. F. Mott and R. V. Gurney, Electron processes in 

ionic crystals, (contains further references). 
4 

Lyddane, Sachs and Teller, Phys •. Rev. 59, 673 (1941). 
5 

H. B. Callen, Phys. Rev. 76, 1394 (1949). 

Translated by E. S. Troubetzkoy 
65 

Hyperfine Structure of the Paramagnetic 
Resonance Spectrum of 53 Cr 3 +in Al 20 3 

A. A. MANENKOV AND A.M. PROKHOROV 

P. N. Lebedev Physical Institute 

(Submitted to JETP editor May 5, 1956) 
]. Exptl. Theoret. Phys. (U.S.S.R.) 31, 

346-347 (August, 1956) 

I N Ref. 1 the fine structure of the paramagnetic 
resonance spectrum of Cr 3 + in monocrystalline 

Al 2 0 3 was investigated. More detailed study of 
this spectrum showed that with concentrations of 
Cr"' 10-4 the fine structure lines, corresponding 
to various electronic transitions, have identical 
widths, equal to 13 G. Further decrease in the 
Cr concentration and also a lowering ofthe tempera
ture of the crystal to the temperature of liquid 
nitrogen did not cause a narrowing of t;,,_e lines. 
These data led to the conclusion, that the line 
width for small Cr concentrations depends mainly 

th . . . fh . fC 3 + on e magnetic mteractwn o t e spms o .r 
with the Al 2 7 nuclei surrounding the Cr 3 + ions 
in monocrystalline corundum. 

FIG. 1 

For Cr concentrations greater than 10-4 , the line 
widths for various electronic transitions are not 
identical: the lines, corresponding to the transition 
M = 3/2 __. X and M = - ~<--> -3/2 are wider than 
the line M = x~ -X. This is connected with the 
fact that in this case the line width depends pri
marilJ on the magnetic interaction between the 
Cr 3 ions. 

Relatively small line widths for small chromium 
concentrations permit one to observe hyperfine 
structure caused by the single stable odd isotope 
Cr 53 whose concentration in the natural mixture 
of isotopes equals 9.4 %. Figure 1 shows the 
oscillogram of the line corresponding to the elec
tronic transition M =X~- K Two components of 

h C 53 . the hyperfine structure caused by t e r Isotope 
may he clearly seen on the wings of the central 
line from the even chromium isotopes, whose 
nuclear spins are zero. The relative intensities 
of the central line and the two supplementary lines 
are in agreement with the values of the nuclear 
spin of Cr5 3 , I= 3/2 2 , and the concentration 

of the Cr 53 isotope in the natural mixture, 9.4 %. 
In order to resolve the hyperfine structure com

pletely, we investigated the paramagnetic resonance 
in monocrystalline corundum, containing chromium, 


