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A connection is found between the state of a nucleus, which is characterized by the mini
mum energy obtained in Ref. 1 and the distribution of the mean square orbital angular momentum 
of the nucleons in the nucleus. The number of particles in the nucleus for which nucleons in 
the l-state first appear has been determined. 

THE statistical model of a nucleus with non
uniform density distribution of nucleons was 

investigated in Ref. l. The parameters of the 
density function were obtained from the condition 
of saturation of the binding energy and the density. 
In the present work, starting out from the particle 
density obtained in Ref. 1, the distribution of the 
mean square orbital momentum of the nucleons is 
calculated and its relation to the state of the 
nucleus which is characterized by the minimum 
energy is found. In the statistical Thomas-Fermi 
model, the mean square of the orbital momentum 
of the nucleon can be expressed by the following 
equation ( the treatment is carried out only for 
neutrons, since the same formulas are also valid 
for protons): 

co 

<L'fv>av = Jr \ L2nN (L) dL. (1) 

0 

Here n N( L )dL is the number of neutrons with 

orbital momentum between L and L + dL which, 
according to the Thomas-Fermi model, is equal 
to 

r, 

nN(L) = 1:/::J ~ Yr2 P~(r)- L~ d;. (2) 
r, 

N is the total number of neutrons in the nucleus. 
The limits of integration should be so chosen that 
the expression under the integral would be real 
for r 1 :::; r 'S_ r 2 . 

With the help of (2), Eq. (1) yields 2 

co 

<L~>av = 15;r;~1i3 \ d; [rPn (r)] 5 • 
(3) 

0 

The maximum momentum of the neutron P n(r), ac
cording to Eq. (12) of Ref. 1, is connected with 
the density of neutrons p n ( r) by the relation 

Pn (r) = (3,;2)'1• fip~1 • (r). (4) 

Taking (4) into consideration, we express the mean 

value of (3) by the neutron density distribution 
function: 

<L 2 > = 8 (37t2)'''1i2 f 4 't. ( ) d (5) 
N av 15;r;N .l r Pn r r. 

0 

Equation (5), together with the renormalization con
dition 

~Pn(r)d't=N (6) 

for a known density of particles p gives the dis
tribution of the mean square angular momentum of 
the neutrons (or protons) in the nucleus. On the 
other hand, we have for the mean value (from the 
shell model of the nucleus), 

N 

<L~>av = ~ ~ [Ni (lNi + 1), 
Ni=l 

(7) 

where LN. is the orbital quantum number of the 
' Ni the neutron. It is clear from this that a defi-

nite requirement follows from the shell model for 
the probable form of the density distribution of 
particles in nuclei, viz: only for a choice of a 
convergent form of the density function of the 
particles can we obtain results from Eq. (5) which 
agree with experimental values of (7). 

For our case of the density of distribution of 
particles, determined by Eq. (42) of Ref. 1, 

Pn (r) = 1/2P (r) = Pone- (r-R,)fa, (8) 

we, making use ofEqs. (6) and (5), obtain after 
integration 

([Jv>av = { 5 2-1/ 1 (9..-;)'/• ti 2 N'Ia 
(9) 

We get precisely the same equation for protons 
if we take Eq. (8) for p ( r) and replace N by Z. 

p 

878 



NUCLEAR DENSITY. AND DISTRIBUTION 879 

Choice of the same function for neutrons and for 
protons in the problem under consideration is jus
tified by the fact that the experimental data on 
shells indicate an identical distribution of 
angular momenta for neutrons and protons. Thus 
in the case of the density distribution (8), the 
mean square angular momentum of neutrons and 
protons in the nucleus is a function of only the 
single parameter E 0 = a/R 0 . One can choose for 

this parameter only such values which, upon 
substitution in (9) give results which agree with 
(7). 

If we choose 

(10) 

we obtain, in the mean, a satisfactory agreement 
with the shell model. The graph of the function 
< L 2 > , obtained from Eq. (9), and also from 

av 

the shell model (7), is plotted in Fig. l. The 
solid line in Fig, l corresponds to the value of 
Eq. (lO). 

It follows from Eq. (10) that the thickness of 
the surface layer a increases in proportion to the 
radius R of the rest of the nucleus (with con
stant de~sity ). Inasmuch as R '"'-A 1/3 [see Hef. 

0 1/3 
l, Eq. (47) and Tables l and 2], then a'"'- A 
also. 

Consequently, the agreement of the data on the 
mean square angular momentum of the neutrons 
and protons in the nucleus (according to the 
Thomas-Fermi model), with the shell model has 
as a consequence that, for A ;;:_, 100, the thick
ness of the surface layer ought to be proportional 
to A 113 . Therefore, there is no necessity (as 
was done in Ref. 2 for the Born-Yang density) to 
choose the surface layer independent of A. 

We establish the connection between the mini
mum energy, obtained in Ref. l, and the distribu
tion of the angular momentum in the nucleus. As 
can be seen from the data of Tables l and 2 1, the 
value of the parameter q, which corresponds to the 
value of E of Eq. (10), is equal to 

0 

q = 3.6 for the case of Eq. (61) of Ref. l (ll) 

q = 3 for the case of Eq. (62) of Ref. l (12) 

Substituting Eqs. (10) and (ll) into Eq. (63) of 
Ref. l, we obtain for the parameters R0 • a, r 0 and 

Po the values: 

Ro = 0.944·10-13A'1'; (13) 

a= 0.189 ·10-13 A'1-; 

For the pair of values (lO and (12) we get 

Ro= 1.133-10-13 A'1•; (14) 

a= 0.227 · 10-13 A'1'; 

r0 = 1.36·10-13 A'!o; 

Po= 0.228 k~ = 0.915 I (4;:: I 3) r~3 • 

The nuclear density (8), with the values of (13) 
and (14) for the parameters R0 , a and p 0 gives 

the correct value for the binding energy E/ A and 
the distribution of the mean square orbital 
momentum, which agrees with the shell model. 
The values of the parameters (13) which character
ize the model of the nucleus (8) are closer to the 
values found from the experimental data relating 
to the nuclear scattering of electrons and nucleons 
of high energy 3 than those of (14). It was shown 
in Ref. 3 that the theoretically obtained angular 
distribution of the scattering of electrons (with 
energy of 15.7 mev) by nuclei of silver and gold with 
nucleon density distribution of the form (8) agrees with 

the results of experiments if we assume that 

Ro = 0.792 r0 A'1•; a= 0,208 r0 A'I•; (15) 

r 0 -.:::; 1 · 10· 13 C.M; Po = 0.87 I ( 4;:: I 3) r~. 

For the density distribution of nucleons (51 )in 
Ref. l, we obtain the following expression from 
Eq. (5): 

(16) 

For constant" particle density of Eq. (58), Ref. l, 
Eq. (5) gives 

(17) 

The graphs of the functions (16) and (17) are 
shown in Fig. l. It is evident from the figure that 
constant nuclear density gives higher values for 
the mean square angular momentum (see also Ref. 
2 ), but that the nuclear density of the form of Eq. 
(51) in Ref. l is too low by comparison with ex
perimental data. 

2. Let us find the relation between the density 
distribution (8) and the first appearance of the 
nucleon with high angular momentum in the 
nucleus. In the limits of applicability to the 
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FIG. l. Comparison of the mean square orbital momentum of 

nucleons, computed according to the model of Thomas-Fermi, 
with values computed from the shell model. Points are the 
data of the shell model: 1-- for nonuniform density (8); 2-
for constant density; 3-- for density of particles of the form 

of Eq. (51) of Ref. l. 

nucleus of the statistical model of Thomas-Fermi, 
the following correlation was established between 
the structure of the shells and the density of 
particles in the nucleus4 

Nz=r(2l+1)3 , 

where 
1 [ N J '[ = 24o-r:2 r 3p (r) r~r m; 

(18) 

(19) 

(20) 

Here N. is the number of particles which corre
spond t'o nuclei which have no nucleons in the l
state; p ( r) is the density distribution of nucleons 

in the nucleus; r is the root of Eq. (20). Sub
stituting the valu~ of (8) in Eq. (20) in place of 
p ( r ), we find 

rm = 3a. (21) 

With the help of Eqs. (8), (6) and (21), we obtain 
N and the coefficient y from Eqs. (18) and (19) as 
fu\tctions of the parameter E 0 in the form 

Nz = T (2! + 1)3, 
(22) 

where 
I= (1 I 187:·27) 

(23) 

The dependence of Nz andy on E0 , computed by 

Eqs. (22) and (23) are represented in Fig. 2 (for 
each l ). It is evident from these graphs that for 

E 0 > > 1, the values of N l for all l are almost in

dependent of E 0 . 

For the value 

s 0 = aj R0 = 0.375 (24) 

the neutron ( or proton ) critical numbers computed 
from Eq. (22) are equal to 

l = 0 

Nz= 
Next 

Integer 

2 3 4 5 6 

1.54 7.12 19.54 41.53 75.83 125.16 

2 8 20 42 76 126 
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FIG. 2. N1 and y as functions of E = a/ R . 
0 0 

These numbers agree well with the values of N l 
determined in the quantum-mechanical shell 
model; these latter are, respectively, equal 
(square potential well) to 2, 8, 20, 40, 70, 112. 

We find from the dependence q = q (Eo) in He£. 
1 (see Fig. 2) that the value of the parameter q 
which corresponds to E0 = 0.375 is equal to 

q = 3.935 for case (61) of He£. 1 (25) 

q = 3.115 for case (62) of Ref. l. (26) 

Substituting (25) and (24) in Eq. (63) of Ref. 
1, we find the following values for the parameters: 

R0 = 0.718·10-13A'I,; (27) 

a= 0.269-IQ-13A'I•; 

f"o = r~A' 1 • = 0,987 -10-13A'1•;p0 

= 0,514k~ = 0.792/(47./3) r~3 • 

For the values of Eq. (24) and (26), we have 

Ro = 0.907-I0-13A'l•; a= 0.340-10-I3A'Ia; (28) 

fo = r~A' 1 • = 1.247. 10-13 A'f·; 

Po= 0.255k~ = 0.792j(47t/3) r~3 • 

In conclusion, I express my deep gratitude to 
Prof. A. A. Sokolov for the discussion of the re
sults, and for his interest in the work. 
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