On the basis of nonuniform density of nucleons, of the type (4) and (5), we can analyze the effective empirical nuclear radii, finding the mean values of different powers of r from $\rho(r)$, on which the various effects depend $\stackrel{* *}{*}$ Thus, the mean value of r^{2} from $\rho_{Z}^{(\mathrm{II})}(r)$ is

$$
\begin{equation*}
\overline{R_{Z}^{2(I I)}}=3 / 5\left[\left(y_{0}^{3}+5 y_{0}^{2}+10 y_{0}\right.\right. \tag{7}
\end{equation*}
$$

$$
\left.+10) / y_{0}^{2}\left(y_{0}+3\right)\right] R_{0}^{2}(\mathrm{II}) .
$$

Finding the mean square radius $\left\{R_{Z}^{2(I I)}\right\}^{1 / 2}$ for the average $y_{0} \approx 1.8$ and introducing the equivalent radius of constant density proton distribution that gives the same $\left\{\overline{r^{2}}\right\}^{1 / 2}\left(R_{Z}=(5 / 3)^{1 / 2}\left\{\bar{R}_{Z}^{2}\right\}^{1 / 2}\right.$, we find

$$
\begin{equation*}
R_{Z}^{(I I)} \cong 1,21 \times 10^{-13} \mathrm{~A}^{1 / 3} \tag{8}
\end{equation*}
$$

in good agreement with empirical electromagnetic nuclear radii ${ }^{11}$.

Since for the densities (4) and (5) the nucleon density differs markedly from zero at distances larger than $R_{Z} \sim 1.2 \times 10^{-13} A^{1 / 3}$ one can understand qualitatively, on the basis of the examined $\rho(r)$, the considerably larger values of nuclear radii ($1.5 \times 10^{-13} A^{1 / 3}$) obtained from the cross section in processes in which nucleons (and evidently π-mesons) take part and data found from α-decay where the effective radii are connected with the region of action of nuclear forces.

If we shall assume the same $\rho(r)[(4)$ and (5)] and the same level scheme (3) for neutrons, the corresponding parameters $x_{0 N}$ and $y_{0 N}$ for $\rho(r)$ will be correlated with N as x_{0} and y_{0} with Z.

Finally, we note that both $\left.\overline{\left\{R_{Z}^{2}\right.}{ }^{(\text {II })}\right\}^{1 / 3}$ and the effective radii

$$
\widetilde{R}_{Z}^{(\mathrm{II})}=R_{0 Z}^{(\mathrm{II})}+1 / \beta=\left(1+1 / y_{0 Z}\right) R_{0 Z}^{(\mathrm{II})}
$$

will change nonmonotonically because of the sawtooth like change of $y_{0 Z}$. Magic nuclei will have lower $\left\{R_{Z}^{2}\right\}^{1 / 2}$ and \widetilde{R}_{Z}. Therefore, the relative drop in the value of the radius should be more pronounced for the doubly-magic nuclei. The effective empirical nuclear radii show also relative drops for the magic and some sub-magic nuclei ${ }^{12}$. Such nonmonotonic character of the effective nuclear radii can be regarded as caused by deviations from spherical symmetry.

I wish to express my thanks to Prof. D. U. Ivanenko and N. N. Kolesnikov for the discussion of the problem and valuable remarks.

Note added in Proof: For the density of the form $\rho_{z}(r)=\rho_{0}\left[\underline{1}+e^{K(Y-c)}\right]^{-1}$ the parameter $K c$ calculated from \bar{L} for $\mathrm{Au}(Z=79)$ is in sufficient agreement with the value $K c \approx 12.0$, for which best agreement between theory and experiment is observed for the cross section angular dependence for the scattering of high-energy electrons on Au_{79} nuclei ${ }^{13}$.

* In the following, dealing with protons, we shall keep in mind that unless otherwise mentioned, the results are valid for neutrons as well.
** The parameters x_{0} and y_{0} were determined from the numbers of first occurrence and the r^{2} also in Ref. 7.
${ }^{1}$ P. Gombas, The Statistical Theory of the Atom, Moscow, 1951.
${ }^{2}$ J. H. Jensen and J. M. Luttinger, Phys. Rev. 86, 907 (1952).
${ }^{3}$ D. Ivanenko and A. Sokolov, Dokl. Akad. Nauk SSSR 74, 33 (1950).
${ }^{4}$ M. Born and L. Yang, Nature 166, 399 (1955).
${ }^{5}$ N. Kolesnikov, Dokl. Akad. Nauk SSSR 103, 57 (1955).
${ }^{6}$ P. F. Klinkenberg, Rev. Mod. Phys. 24, 63 (1952).
${ }^{7}$ N
N. Kolesnikov, Dissertation, Moscow State University, 1955.
${ }^{8}$ B. Kerimov, Dissertation, Moscow State University, 1950.
${ }^{9}$ R. Wilson, Phys. Rev. 88, 350 (1852).
${ }^{10}$ A. Green and N. Engler, Phys. Rev. 91 , 40 (1953).
${ }^{11}$ F. Bitter and H. Feshbach, Phys. Rev. 92, 837 (1953).
${ }^{12}$ D. Ivanenko and S. Larin, J. Exptl. Theoret. Phys. (U.S.S.R.) 24, 359 (1953).
${ }^{13}$ R. Hofstadter, Proc. 5th Ann. Rochester Conf., Jan. 1955.
Translated by H. Kasha
111

Some Cases of Generation of Heavy Unstable Particies on Beryllium Nuclei

N. G. Birger, V. V. Guseva, G. B. Zhdanov
S. A. Slavatinskil and G. M. Stasilkov
P. N. Lebedev Physical Institute

Academy of Sciences, USSR
(Submitted to JETP editor September 23, 1955)
J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 590-591
(March, 1956)
[N recent years, it has been made evident ${ }^{1-3}$ that hyperons and K-mesons can be created by
pairs in reactions of the type:

$$
\pi+p \rightarrow \Lambda+K \text { or } N+N \rightarrow \Lambda+K+N
$$

In the case of interaction of π-mesons with free protons, a correlation of the positions of the planes of emission and of decay of the hyperons is observed. Such a correlation is not observed if the hyperons are produced as a result of irradiation of heavy nuclei (Pb) by cosmic rays ${ }^{4}$.

Single cases of formation of hyperons and K mesons on light nuclei (Be) irradiated by cosmic rays have been observed in our experiments performed at an altitude of 3860 m above sea level. The experimental set-up consisted of a Wilson chamber with a diameter of 30 cm and a depth of illumination of 8 cm . The chamber contained a 5 cm thick beryllium plate, and under it a 1 cm thick lead plate. The chamber was in an 8,500 oersted field of an electromagnet. The chamber was controlled by a system of counters separating electron-nuclear showers.

For 25 observed cases of generation of showers on beryllium, there were observed 3 cases of decay of heavy particles (formed on the beryllium), dur-

Fig. 1

Fig. 2
ing their flight. The main characteristics of these cases are reported in Table I.

Figure 1 shows the photograph of case 117.63.

We analyzed all the known schemes of decay of charged hyperons and heavy mesons with emission of a single charged secondary particle. The

I 3TGVL
hypothesis of a decay-scheme of the hyperon: $\Sigma^{+} \rightarrow \pi^{+}+n$ fits best the observed values of the momentum, of the angle and of the ionization ratio pertaining to the primary and secondary particles. The observed half-life of the particle is also in good agreement with this hypothesis. For the energy of decay of the hyperon we get
$Q=\left(125_{-20}^{+175}\right) \mathrm{mev}$.
Figure 2 shows the photograph of case 120.54: generation of V^{0}-particles in a shower. Two types of neutral V-particles are known: the Λ^{0} and θ^{0} particles. The analysisof the decay-schemes of these particles $\left[\Lambda^{0} \rightarrow p+\pi^{-}\right.$and $\theta^{0} \rightarrow \pi^{+}+\pi^{-}$] has shown that, in the observed case, a Λ^{0}. particle decayed into a fast proton and a slow π^{-}-neson. In case 112.66 one also observes the decay of a V^{0}-particle formed on the beryllium plate. The positively charged secondary particle cannot be a proton because of the observed values of the nomentum and of the ionization. One must then assume that the decay follows the scheme $\theta^{0} \rightarrow \pi^{+}+\pi^{-}+214 \mathrm{mev}$. In this case, the momentun of particle l must be equal to 6.3×10^{8} ev , which is in good agreement with the experimental value. In all the observed cases the direction of the charged particle (which generated the V-particle on a Be enucleus) is known; hence, one can measure the angle φ between the plane of generation of the V-particle and the plane of its decay (see Table II).

Table III shows the data on angles φ for all cases known in the literature of pair generation of hyperons and K-particles resulting from irradiation of hydrogen by π-mesons.
For all 9 observed cases of formation of hyperons in a π_{p}^{-}interaction, the angle φ is such that $\psi \leq 40^{\circ}$; this indicates that hyperons have large spins. At the same time, for hyperons formed on a Be nucleus, we have $\psi \geq 40^{\circ}$ (Table II). This is probably due to the Be nucleus (such as scattering of hyperons or their generation by secondary particles of the shower).

The authors thank A.E. Chudakov for discussion of the results, K. A. Kotel'nikov, V. M. Naksinienko, C. V. Riabikov for taking part in the study of the photographs, and also C. Fedorov for helping in the photometering of the tracks.

[^0]${ }_{571}{ }^{4}$ G. D. James and R. A. Salmeron, Phil. Mag. 46, 571 (1955).

Translated by E.S. Troubetzkoy
112

Linearization of the .iartree Equations

P. S. Zyrianov and V. M. Eleonskii
The Ural Polytechnical Institute
(Submitted to JETP editor September 24, 1955)
J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 592

(March, 1956)

IN addition to the existing methods of description of collective interactions ${ }^{1-4}$ we may consider another one based on the linearization of the Hartree equation near the solutions with constant density.

In the equations

$$
\begin{align*}
i \hbar \frac{\partial \psi_{i}}{\partial t}+\frac{\hbar^{2}}{4 m} \Delta \psi_{i}-\left\{\int G\right. & \left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \tag{1}\\
& \left.\times \sum_{j}\left|\psi_{j}\left(\mathbf{r}^{\prime}\right)\right|^{2} d \mathbf{r}^{\prime}\right\} \psi_{i}(\mathbf{r})=0
\end{align*}
$$

let us make the substitution

$$
\psi_{i}(\mathbf{r}, t)=\sqrt{P_{i}(\mathbf{r}, t)} \exp \left\{-i S_{i}(\mathbf{r}, t) / \hbar\right\}
$$

This leads to the system of equations

$$
\begin{align*}
\partial P_{i} / \partial t+ & m^{-1} \mathrm{div}\left(P_{i} \nabla S_{i}\right)=0 \tag{2}\\
& \frac{\partial}{\partial t} S_{i}+\frac{1}{2 m}\left(\nabla S_{i}\right)^{2}+\int G\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \\
\times & \sum_{j} P_{j}\left(\mathbf{r}^{\prime}\right) d r^{\prime}-\frac{\hbar^{2}}{4 m}\left\{\frac{\Delta P_{i}}{P_{i}}-\frac{1}{2}\left(\frac{\nabla P_{i}}{P_{i}}\right)^{2}\right\}=0
\end{align*}
$$

The form of these equations is identical to the form of the equations of irrotational motion of an ideal compressible fluid. The states of the system which are close to a constant space density of particles can be described by equations obtained by the linearization of equations (2) near the solutions, with $P_{j}^{0}=$ const $=P_{0}, S_{j}^{0}=E_{j}^{0} t+\bar{S}_{j}^{0}(\mathbf{r})$; $\Delta S_{j}^{0}=m \mathbf{v}_{j}^{0}\left[\mathbf{v}_{j}^{0}\right.$ is the velocity of the j th particle in the state of a uniform space density of particles, E_{j}^{0} $\left.=m\left(v_{j}^{0}\right)^{2} / 2\right]$.

Let us look for the solutions $P_{j} S_{j}$ of the linearized equations in the form of a superposition of plane waves $[\sim \exp (i k r-i \omega t)]$. The conditions of the solvability of homogeneous algebraic equa-

[^0]: ${ }^{1}$ Fowler, Shutt, Thorndike and Whittemore, Phys. Rev. 91, 1287 (1953); 93, 861 (1954); 98, 121 (1955).
 ${ }^{2}$ W. D. Walker, Phys. Rev. 98, 1407 (1955).
 ${ }^{3}$ Block, Harth, Fowler, Shutt, Thorndike and Whittemore, Phys. Rev. 99, 261 (1955).

