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~he mag_netic properties of electrons in a metal are investigated for the case of an 
arb~trary d~spers~on law. The energy levels are found for a quasi-particle under an 
arbitrary dispersiOn law in a magnetic field, and the magnetic moment of a gas of such 
quasi-partic_Ies is computed, spin paramagnetism being taken into account. It is shown 
that the penods and amplitudes of the oscillations are determined by the form of the Fermi 
boun~ary surface. Knowledge of these quantities permits one to reconstruct the form of the 
Fermi surface and the values of the velocities ~pon it. 

INTRODUCTION 

HE question of the electron energy spectrum is 
of central importance in the construction of a 

quantum theory of metals. There is every reason 
to suppose that the electron spectrum for metals is 
of the Fermi type. This implies that at low 
temperatures the electrons in the metal, interacting 
with one another and with the lattice, may be 
replaced for thermodynamic purposes by an ideal 
Fermi gas of charged particles following some 

dispersion law 2 = 2 (p x' p , p z). The majority 
of the thermodynamic and kinetic properties of a 
degenerate Fermi gas, however, are highly 
insensitive to the dispersion law, as a consequence 
of which their investigation does not permit one to 
draw any conclusions concerning the form of the 
law. 

Substantially different in this respect is the 
behavior of certain magnetic properties of metals 
- in particular, oscillations of the magnetic 
susceptibility -which, it appears, depend strongly 
upon the electron energy spectrum and may serve 
to distinguish it uniquely. 

The periodic dependence of the magnetic 
susceptibility upon the field at low temperatures 
(the De Ha1ss - Van Alphen effect) has by now 
been observed for a large number of metals (Bi, 
Sb, Hg, Zn, Cd, Be, C, Mg, Ga, In, Sn, Tl, Al) 1 

and may be regarded as a property common to all 
metals. At the same time, the quantitative theory 
of this phenomenon had until recent~y been worked 

1 B. Verkin, B. Lazarev, N. R1.1denko, J. Exper. 
Theoret. Phys. USSR 20, 93, 995 (1950); 21, 658(1951 ); 
Dokl. Akad. Nauk SSSR 80, 45 (1951); the collection 
"In Memory of Sergei lvanovich Vavilov", Acad. Sci. 
USSR Press, 1952. B. Verkin, Dokl. Akad. Nauk SSSR 
81, 529 (l9S1); B. Verkin, I. Mikhailov, J, Exper. 
Theoret. Phys. USSR 24, 324 (1953); 25, 471 (1953). 

out only for the case of an electron gas following 
a quadratic dispersion law 2 ' 2 a. 

The quadratic dispersion law is correct for an 
electron in a metal only in the lower part of the 
appropriate energy zone, and may be used to 
investigate the magnetic properties of metals 
having a small number of conduction electrons 
(such as Bi). In general, however, there is no 
justification for the use of a quadratic dispersion 
law, as a consequence of which it is essential 
to determine to just what extent the peculiarities 

·of the effect are to be attributed to the electronic 
dispersion law. Certain qualitative considerations 
associated with this circumstance have been 
presented earlier by Onsager3. A qualitative 
theory has been offered in a paper by the present 
authors 4 • 

. The present article contains a detailed presenta
tion of the results published earlier in the brief 
communication4 , with, in addition. a treatment of 
the spin paramagnetism ( a treatm~nt of spin 
paramagnetism for the case of a quadratic disper
sion law has been given elsewhere 2 a). 

1 • EJ'IE RGY L EVEU, OF A OUASI-P ARTICLE 
IN A MAGNETIC F'IELD 

We investigate the motion of a charged quasi-

2 L. La_ndau, Z. f. Phys. 64, 629 (1930); Supplement 
to the article: D. Shoenberg, Proc. Roy. Soc. 170A 341 
(1939). ' 

2 a A. Akhiezer, Dokl. Akad. Nauk SSSR 23, 872 (1939); 
lu. Rumer, J. Ex per. Theoret. Phys. USSR 18, 1081 
(1948); G. Zil'berman, J. Ex per. Theocet. Phys. USSR 
21, I209 (1951); E. Sondheimer, A. Wilson, Proc. Roy. 
Soc. (London) 21 OA, I 73 0951). 

3 L. Onsager, Phil. Mag. 43, I 006 (1952) 
4 I. Lifshitz and A. Kosevich, Dokl. Akad. Nauk SSSR 

96, 963 (1954). 
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particle under a general dispersion law 

(l.l) 

in a homogeneous magnetic field. 
If the magnetic field H is directed along the 

z - axis, the Hamiltonian for such a particle in the 
magnetic field is obtained formally by replacing in 
(1.1) the momentum component pi by the linear 
momentum operator P~, the latter being interrelated 
by the commutation rules: 

[Py. P.d 
(1.2) 

This relation between P v and P corresflonds to 
the adjustable relation bet~een th~ gener~lized 
coordinate and the generalized momentum: v ... 
[P , Qy] = 1. 

The role of the generalized coordinate operator 
y 

is played here by the operator (c/eH)P x· There-
fore the quasi-classical quantization condition 

2~ ~ PydQy = (n + "() h 

may be written in the form: 

(c I 2-rceH) ~ PydP., (1.3) 

(for the case of a quadratic dispersion law y = ~; 
in the general case, however, y may differ from ~). 

The integral fJP iP x defines the area bounded by 
the plane closed curve 

(1 .4) 

Pz = Pz =canst, 

which allows (1 .3) to be written in the more sym
metrical form: 

the double integral being taken over the region 
bounded by the curve (1 .4). Here S(E, p ) is the 

z 
area intercepted on the surface of constant energy 

(1.6) 

by a plane perpendicular to the direction of the 
magnetic field. 

The condition (1.5) specifies, in the quasi
classical approximation, the implicit dependence 
of the energy of a quasi-particle in a magnetic 
field upon the quantum number n: 

(1.7) 

In accordance with (1.5), the distance between the 
energy levels will be 

/::,.En= En+I-En = 2-rcheHf(ciJSjiJE). 

If the quasi-particle possesses spin ~ and has a 
magnetic moment ~flo= ~(e1i/m 0c), then in the 
expression for the energy of such a particle the two 
possible orientations of the spin relative to the 

direction of the magnetic field H must be taken 
into account: 

Thus, the energy levels in a magnetic field of a 
quasi-particle having an arbitrary dispersion law 
and a spin ~. which we shall henceforth refer to as 
an electron, are given by the expression (1 .8); 
m0 , which appears in the definition of flo• 
represents the mass of the electron. 

It should be remarked that the components pi in 
'(1.1) for electrons in a metal are components of a 
quasi-momentum. This fact, however, does not 
affect the results obtained, provided that the 
surface (1 .6) does not intersect itself, and that 
each of the curves (1 .4) is located within one of 
the cells of the reciprocal lattice. In addition, the 
radius of curvature of the electron trajectory must 
clearly be assumed to be large compared to the 
lattice constant. 

2. CALCULATION OF THE MAGNETIC MOMENT 

The magnetic moment M of the electron gas is 
found by taking the derivative of the thermodynamic 
potential n with respect• to the field : M=-an /aH. 
To determine the thermodynamic potential n we 
make use of the usual formula of statistical 
mechanics: 

Q = - 8 ~ In { 1 + exp ~-: (s) }. (2.1) 
s 

where E(s) is the energy of the electron in the 
state s, ( is the chemical potential, ® = kT, and 
the summation is performed over all of the possible 
states s of the individual electron. The energy 



638 I. M. LIFSHITZ AND A. l\I. KOSEVICH 

E(s) for am electron in a state with given p z' n, and 
direction of spin is given by the expression (1.8). 

Since, in computing the number of states, the 
commutation relations (l .2 rather than the disper
sion law for the electrons are the essential factor, 
the number of states is calculated by the same 2 
method as that use.d by Landau for free electrons 
in particular, it is possible to sta~e that_the 
number of states of momentum p z m the mterval 
(pz' Pz + tlp) for a given n and a given spin 
orientation is equal to 

lf eH !1p 
v 47t"1L ~c z • 

Therefore, (2.1) may be rewritten in the form: 

00 00 

fl=- V 41t~~2c ~ ~ 8 ~ dpz 
8 Pin n-=0 -oo (2.2) 

Representing the expression following the sum
mation sign in (2.2) by cp(n), we use for the summa
tion over n the Poisson formula5 : 

m 

.Q = - V ___!!!2_ \ 1 {_!_ m (0).+ \ dn CD, (n) 47t2 /i.2c ~- 2 r ~ 
spin 0 

00 00 

+ 2 ~ ~ dn r.p (n) cos 2TCkn}. 
k=l 0 

Inasmuch as y--+ ~forE n-+ E 0 , it may readily 
be shown that the thermodynamic potential can be 
written in the following form: 

m 

f2=-v...E!__~{· (' 
47':21L~c L..J .) 

spin -'/, 

dn? (n) (2.3) 

c:n oo 

+ 2 Re ~ ~ dn cp (n) e2rtkin}. 
h=--.t -lf: 

The first term inside the curly brackets 
corresponds to the continuous energy spectrum. It 
can easily be shown that this term will contribute 
only to the spin paramagnetism of the electron gas. 
Introducing the symbol t: = ( ±~~fl. H, we obtain 

0 

5 Courant and Hilbert, "Methods of Mathemal.ical 
Physics", v. I. 

00 

11 = ~ dn9(n) 
-'/, 

00 00 

= e ~ dn ~ dpz In {1 + e(e--Enl/El} 

-'/, -oo 

00 

= El ~ dEln {I+ e(•-En>te} ~dpz( ::). 
o S>o 

where S ""'S ( E, p ). 
The relation bet~een E and n is given by the 

expression (1.5), and hence 

an c iJS 
iJ E = 21te1LH iJ 1:.: ; 

(2.4) 

00 

11 = 21t~~H ~dE (2.5) 
0 

X In {I -t- e(•--E)/8} \ d ( iJS) 
· .) Pz iJE • 

S>o 

Taking into consideration the nature of the 
limits of integration for the inner integral in (2.5), 
we write 

00 

11 = 21t~~H ~dE 
0 

X In {I+ e<•-E>Je} d~ ~ dpzS (E, Pz) 
S>o 

(2.6) 

We now note that the inner integral in (2.6) gives 
the volume bounded by the surface of constant 
energy E in momentum space. Hepresenting this 
volume by U (E), and introducing the expression 

we obtain 

<X> 

W'(s)=\ ll(E)dE 
j e<E-e);e + 1 ' 
(I 

J c lt'T { ' 
l = ,,_ ·•tj- v . 2). 

.c...~en ~ , 
(2.7) 

Making use of the fact that fl/l « (, we can 
expand W( E) in powers of fl/i, sto~ping with the 
second-order terms. If we insert this expansion 
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into (2.3) and sum over the two possible spin 
orientations, it is seen that the corresponding part 
of the thermodynamic potential n is equal to 

V [ (!Loll )2 d~ lV (~) ] 
Ql = - Srtata 2W (C) + .,2 ~ . 

(2.8) 

] 1 , therefore, actually contributes only to the spm 

paramagnetism of the electron gas: 

M - V 1 d2W(~) (2 9) 
Iz - P.o 16rtata ~ ftoH. . 

The expression (2.9) has a simple physical 
interpretation. Under the condition 8 « C::, which 
we shall consider always to be fulfilled, one can 
set 

t; 

W(C);:::::; ~ U(E) dE, 
0 

which implies 

dz W (~) . dU (~) 
~=~-

The product 

V dU (Q r 
8it31i,3 ~ =: p (.) (2.1 0) 

gives the number of states per unit energy interval 
at the Fermi boundary energy; (2.9) may therefore 
Le written in the form 

(2.11) 

The diamagnetism of the electron gas and the 
De Haas -Van Alphen effect are described Ly the 
second term in the curly brackets i.n (2.3). Using 
U.S) and (2.4), we can transform the integrals 
entering into this term: 

00 

/(k) = ~ dnrr(n)e2nkin _.,. 
oo on E 

= e ~ dn ~ dpz In { 1 + exp E (:-) "} e2rthitl 
-'/, ·-00 

ec r J c:-£} = Zrte1i ~ dE ln ll + exp - 8 -
o 

X ~ dpz ( :~) exp {e~~ S (E, Pz)- 21tki1}· 
S>o 

Integration by parts leads to the expression 

00 

j (k) = 2rt:1iH ~ dE f(E H e:) 
0 (2.12) 

f(x) represents the Fermi distribution function: 
f(x) = (1 + ex)-l. 

In computing the inner double integral in (2.12) 
we make use of the fact that under the assun.ption 
t>f very large numbers (c /2rrefili)S = n + y. This 
permits the use of the method of stationary points 
for the asymptotic evaluation of the integral. It is 
found that the n•ajor contribution to /(k) con.es, 
first, from integration in the vicinity of the peaks in the 
extremum point of 5 ( E ', pz)' forE'= E -i.e., 
the point at which aS(E, p);apz = 0- and 
second, from integration in the vicinity of the 
region of integration: E '= E, S(E, p) = 0. As 
regards the integration about the stationary point, 
this yields the oscillating part off (k) (cf. 
Appendix), corresponding to the oscillating part of 
the magnetic moment. Integration about the peak 
E '= E, S(E, p) = 0, yields the nonperiodic part 
of f(k ), which determines the diamagnetism of the 
electron gas. The neighLochornl of S(E, p) = 0, 
however, corresponds to small values of the 
quantum number n [ cf. Eq. (1.5)], for which the 
energy levels calculated in the quasi-classical 
approximation (Section 1) are, generally speaking, 
incorrect. Therefore the nonperiodic part of 
f(k), an expression for which is given in the 
Appendix, can give the correct figure for the 
diamagnetism of the electron gas only in the 
special case for which the quasi-classical energy 
levels coincide with the true levels for all n (for 
instance, in the case of a quadratic dispersion 
law). 

The first term in the asymptotic expansion of the 
inner double integral about the stationary point 
leads to the following expression for f (k): 

j (k) = 1 ( e'lifl)''•--,!-. v 2rt \ c k 1• ( 2.1 3) 

X ex p {- 27tkil + i ~ - i ; } 

C (E-e:)/a~s(E,pz) ~-'/, 
X j dEf e 0 .2 

0 • Pz m 
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We have represented by Sm(E) the extremal value 
of S ( E, p ) for constant E. If S (E) represents a z m 
maximum for the intercepted area, then the phase 
iTT/ 4 takes the minus sign in (2.13), while if 
Sm(E) is a minimum area, the phase iTT/4 takes the 

Plus sign. The derivative (a 2S/ap 2 ) is taken at 
- z m 

the extremal point. 
To compute the integral in equation (2.13) we 

make use of the fact that, under the assumption 
that dSm(E)/dE =f= 0, and for the evident 
inequality El « E, the major contribution to the 
integral comes from the integration about the point 
at which the function f [ ( E - E ) / 0 ] varies 
most rapidly; i.e., about E = E. Therefoce, 
expanding S m (E) in powers of E - E and integrating, 
we obtain 

Cf) 

C (E--r::)l iJ2S ,-1
/, {· kc r } .) dE f - 1:;r- ~ exp t eMf .:>m (E) 

o Pz m 

{ 
• 11; • kc S ( )} exp - t -+ t -- r;; 

-::::::;eMI,:P'(kl.) " I 2 e"liH m· ,(2.14) 

kc ~a~~~/,dSm(r::)fdr:: 
0Pz m 

where W (z) = z sinhz, and A= (TTc8/e1iH) 
x (dS (E)/ df ), 

m 
Inserting the expression (2.14) into (2.13), we 

obtain: 

1 e"lif!'\ 'I • 
J(k) =- V21T: \-c-) 

(2.15) 

1 'f'(k).) exp{i e'iBsm (r::) +iT-2diy} 
X k'1• jo2S(r::,pz)fop;j~·dSm(r::)fde; • 

We compute the second term in the curly 
brackets of (2.3) by summingover k: 

2Re ~ J(k) 
k=l (2.16) 

1
-I/, (dSm (r::))-1 

m dr:: ' 

,, 1 [ kc - 1T: 2 k J 
X~ k'f, ':P'(k/.)cos e1iH Sm (s) +4 - 'It i_ · 

ll=l 

In sumn,ing over the two spin orientations it is 
possible, in all of the expressions in (2.16) except 
the argument of the cosine, simply to replace E by 
(;. In the argument of the cosine, however, it is 
necessary to expandS m (E) in powers of p.a'l, 

stopping with the first power of p.0H: 

1 dSm (~) 
Sm (s) = Sm (C) +2 ttoH ~· 

Taking this into account in the summation we 
obtain as the final expression for the oscillating 
part of the thermodynamic potential n, con·espond
ing to the second term in the curly brackets of 
(2.3): 

Q _ V (e"liH)'/,1 iJ2S ~-~/, (dSm l-1 
2 - 1T;2V21T; 1i3 -c- ap; m , ~ J (2.1 7) 

c:o 

" 'f' (k).) [ kc _ 11; J 
X LJ ----;rr;- cos e"liH S m (C) + 4 -- 2dj 

k=l 

v COS[_!___ dSm (~)] 
r- 2m0 ~ • 

In order to determine that part of the magnetic 
moment which is contributed by (2.17) we nmst 
differentiate n 2 with respect to the magnetic field 
intensity. In this differentiation the factors pre
ceding the cosine, which vary slowly with H, need 
not be differentiated at all; it is necessary only 
to differentiate the cosine, whose argument depends 
upon H. We have, therefqre, for the component of 
the moment in the direction of the magnetic field*: 

v (e"li •t, sm (~) YH 
Mo sc = - 11;2 V21T: Ji3 c) I a~s I ap; l:fz• dSm I d~ 

co 1 
X ~ k'!, ':P' (kl.) 

k=l 

(2.18) 

xsin [ e~~ Sm (q+ ~ - 27tkj] 

[ k dSm (~)] 
X cos 2- -d-,.- . 

mo " 
Combining (2.8) and (2.17) as well as (2.11) and 

(2.18), and taking into consideration the diamagnet
ism of the electron gas, we write the final express
ions for the thermodynamic potential n and the 
magnetic moment: 

v 1 
Q =- 41T:a"/ia W(s)- V 2(X1 + X2)H 2 (2.19) 

* Throughout what follows, the values given are those 

of the component M z of the moment urn in the d.iirect ion 

of H. The corresponding oscillating component M x of the 

momentum in the perpendicular direction is obtained by 

multiplying (2.18) by (l/Sm)(asm;a {}) ({}being the 

angle in the x -z plane). 
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+ v (e'liH).''/ a2s ,-''• (!sm )-I 
1t2 y 21t 1L 3 c iJp2 d~ 

z m 

en 'Y (kJ...) [ kc 
X~ ~cos e1LH Sm (() 

k=l 

1t J [ k dSm (~)]· + -- 2'1tk"f cos ------
4 1 2m0 d~ ' 

Jl1 = V(Xt + X2)H (2.20) 

4 v ( e1L)''• sm (~) YH 
1L3(21t)•,, c I iJ2S (~. Pz) I op; ~~· dSm (~) / d~ 

~en 'Y (k)..) • [--'!£_ S (r) 
X ,1 sm "'H m"' k • e/'L 

k=l 

Here X 1 re.(X"esents the spin paramagnetic 
susceptibility of the electron gas, determined from 
(2.11 ), and x2 is the constant part of the diamag

netic susceptibility (cf. Appendix). 
We may remark that the nonperiodic part of the 

magnetic moment [ the first two terms in (2.20) ] 
is of little interest, inasmuch as it is obscured in 
metals by other effects (for example, by the atomic 
magnetism). The oscillating part of the magnetic 
moment, to the analysis of which we now turn, is 
of primary interest. 

3. ANALYSIS OF RESULTS 

From the formula for the magnetic moment (2.20) 
it can be seen that the amplitude and period of the 
oscillations in the magnetic moment are fully 
determined by the extremal value of the area on the 
Fermi boundary surface intercepted by the plane 

Px }j .. const., and by the derivatives of the area 
intercepted on the Fern.i surface at the extremal 
point. 

For a quadratic dispersion law 

1 cS = -2 (p2 + p2 + p2) . m x y z 
(3.1) 

we have 

S (E, p) = 2r.m (E- (p; /2m)); 

Sm (E)= 2r.mE, dSm (E)/ dE= 2·.-:m, 

In this case the expression (2.~) goes over into 
the usual formula for the magnetic moment of a gas 

of free electrons2 • 

For a temperature of absolute zero or for very 
strong magnetic fields, in which case A « 1, the 
function 11' (k A) n:ay be replaced in (2 .;D) by unity; 
then the oscillating part of the magnetic mon.ent 
is given by the formula: 

Mosc =- 4 V ( e1L)'/, 
1L3(27t)''• c 

00 

"' 1 . [ kc S (r) _ 7t 
X LJ k'!. sm e"liH m "' +4 

k=l 

(3.2) 

For small fields,.\:» l and 'l'(k ,\)"" 2k/...e-k ~ and 
therefore only one term (fork= l) of the summation 
in expression (2.20) need be taken, which yields 

(3.3) 

Mosc = - A (H, ()sin [ e;H Sm (C)+ : - 2'1tj ]. 

where 

4 V (e1L)''• A(H, C)= -
"/i3 (27t)·'· c 

X 

Since we used the thermodynamic potential n in 
calculating the magnetic mon.ent, ( and ll must in 
consequence be regarded as independent variables. 
In actual applications of Eqs. (2.20), (3.2), and 
(3.3), however, one n.ust take into consideration 
the dependence of ( upon 11, determined by the 
constancy of the number of particles N: 

l\.1 = -an (C, H) I a:= const. 

This dependence is, however, sufficiently weak 
that it may he neglected. It is easy to convince 
oneself of this by evaluating the part of (which 
depends upon the magnetic field, The expression 
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for il((, H) is given by formula (2.1 9); in 
differentiating this \\ ith respect to (we retain , as 
before, only the first few terms in the expansion 
in powers of fl. Then 

_ _ v __ dU7 (~) 
N- 4rdi" d~ 

(3.4) 

00 1 
X ~ k'J, W (kl.) sin [ e~~ Sm (C) 

h=l 

- 7t 2~k J [ k dSm(~)] +-4 - .. r cos ----
2mo d~ · 

Under the assumptions we have made (6 « (), 
dW(()/d( = U((); this is the volume in rr'omentun1 
space enclosed by the Fermi boundary surface. If 
we introduce this notation into formula (3.4), and 
for simplicity designate the summation in the 
second term of this formula by G ((,/{), we obtain 

U(~0) = U(C) 
(3.5) 

_ ( eiicH )"' 2 Vf,; G (~. H) 

I iJ2S (~. Pz) I op;l~' ' 
where ( 0 is the chemical potential at H = 0. 

Assuming a small increment to ( dependent upon 
the magnetic field H, we n.ay set 

Expanding the quantities in (3.5) which depend 
upon I; in powers of ~ and stopping after the first 
few terms, we have 

n(l" ) _ Vi' r ) + 1; ( dU (~o) 
u So - ,., o o d~o 

_ ( e~H)"• 2 V~G (~0 , H) 
I 02S (~o, Pz) I iJ P; ~~· 

whence it follows that 

~(H) 

(3.6) 

_ 2 V~11: ( eiiH)"'• G (~0 , H) 
- ~odU (~o) / d~o \-C- l i)"'S ()"" ) I .1 21'!, 

" '->0• Pz , u Pz m 

Inasmuch as the summation G((, fJ) appearing in 

(3.6) is of the order of unity, while 1a 2s;ap;1~ is a 

nondimensional quantity representing the aniso
tropy of the Fermi boundary surface (f.QL!he case 
of a spherical surface it is equal to y2rr ), the 
quantity I; (H) is determined by the ratio 
(e1iH/ci 12! ( 0(JU((0)/d( 0). If the cases in which 

the anisotropy of the Fermi surface is anomalously 
large are neglected, then it is possible to assun,e 

that V((0) '"'- [S(( 0) ] 312 where S(( 0 ) is the mean 
area intercepted on the Fermi surface by the 
planes p z= const. This permits setting, in order 
of magnitude 

dU •; [ dS ]'J, 
C0 d~o ~ U (Co)~ [S (Co)l '~ Co d~o , 

and we can write 

E(H) (3.7) 

"""' ( eiiH )''•j ~0 dU (~o) """' ( eiiH I dS (~o) )'/ '. 
c d~0 ~oc d~o 

1\'e note here that, as follows from (1.5), the 
mean distance between neighboring energy levels 
near the boundary energy is equal to 

f:lE = 27te1iH I dS (~0 ) 
c d~o 

The distance between the levels is assumed to 
he considerably less than the boundary energy ( 0 ; 

from (3.7), therefore, we obtain the following 
evaluation of ~ (11): 

Thus, the quantity /;(H), determined by the 
expression (3.6), is actually small in magnitude. 
For the case of the quadratic dispersion law (3 .l) 

~(H)= (eu-:)'1, 0((0 , H) 
mc~o 211: V2. 

( e1iH)'f, ([LH)'/, 
~- =- ~1. 

mc~ 0 ~o 

As regards the argument of the sine in (2.:W), 
(3.2), or (3.3), its dependence upon the magnetic 
field is incorporated in the expression 

c S (r) c [s (r ) tr dS m (~o) .] 
efiH m " = ,efiH m "o + ""o d~o . 

c 
= e'liH Sm(~o) 

dSm(~o) (3.9) 
2Jf~ (e1iH)'!, G(~o.H) d(0 

+ dU (~o) I d~o -c- I (12S(~o. p z) i iJ2p z r~· 
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The second term in (3.9) is equal in order of 
magnitude to (11£/ , 0)72 « 1; the periodic depend
ence of the magnetic moment upon the magnetic 
field is therefoce fully determined by the first term 
in (3.9): 

(3.1 0) 

It follows from (3.8) and (3.9) that ' may be 

replaced by' 0 in E:qs. (2.19) and (2.20), as well 
as in (3.2) and (3.3), and the period of the oscilla
tions may be represented in the form 

(3.11) 

In the event that there are several unfilled 
zones, in which the classical motion of the 
electron is independent - i.e., when the Fermi 
surface is reduced to a few closed surfaces - each 
group of electrons has its own Sm(E) and makes 
its own oscillatory contribution to the magnetic 
moment. If in this case the boundary energy ' is 
found to be distributed about the lower part of the 
unfilled zone, we may content ourselves with the 
representation 

The maximum area intercepted on the ellipsoid 
2 (P , P , P ) = E by the plane P x H = const. 

X y Z 
will be 

where the (J.. • are the direction cosines of the magnetic 
I 

field vector H in the system of the crystallographic 
axes. This yields for the corresponding factor 
asm;aE = 2rrm and period 

L).(i)- [.L 
H - ~-e:o ( p. = .!!!:__) 

me , 

In the case of a nearly-filled zone the energy at 
the upper boundary has the form 

which yields 

p.·=enjm*c, 

In the presence of strong mass anisotropy ~ven 
a slightly mosaic structure leads t? ob~cura.twn 
or complete obliteration of the osCillations m the 
event that the number of electrons in the 
corresponding zone is large. This obscuration of 
the phase of the oscillatory term may be 
represented in the form 

where /1-{J is the angle of mosaicity. For /1-{J» 1 
the oscillations disappear. Therefore, only those 
groups of electrons or holes in which the number 
of particles is extremely small will participate in 
the effect. Oscillations having smaller periods 
can appear only for sufficiently high fields. Since, 
however, the curvature of the surface corresponding 
to an anomalously small number of electrons is as 
a rule extremely high (anomalously small electronic 
''masses"), even in this case there is no founda
tion for assuming a quadratic dispersion law. 

Thus, the occurrence of the experimentally 
observable De Haas-Van Alphen in a large group of 
metals provides grounds for assuming that the 
presence of zones having an anomalously small 
number of electrons is a general property of 
metals. It is possible that the appearance of these 
zones is connected with interactions between the 
electrons and the lattice. The discovery of an 
isotopic effect might serve to confirm such a 
supposition. 

Finally we turn our attention to the fact that 
careful experimental measurement of the period of 
the oscillations in the magnJetic moment 11 (l /H), 
as well as of the an1plitude of the oscillations and 
the temperature dependence, would perrr.it the 
reconstruction of the form of the Fermi boundary 
surface, and would also permit the determination 
of the velocity of the electrons upon this 
surface- i.e., the problem may be solved in an 
inverse sense, so to speak, to that in which we 
have solved it. The feasibility of this procedure 
is a consequence of the fact that the period of the 
oscillations determines the extreme value 

Sm(') of the area intercepted on the FerrLi 
boundary surface by the planes perpendicular to the 
direction of the magnetic field, while the amplitude 



644 I. M. LIFSHITZ AND A.M. KOSEVICH 

of the oscillations and the temperature dependence 

determinedSm(()/d( and la2S((, p)/a~zlm· As 
has been demonstrated in a paper by Lifshitz and 
Pogorelov 6 , a know ledge of these quantities, under 
quite general assumptions, is adequate for the solution 
of the inverse problem. 
If it is assumed that the Fermi boundary surface 

has a center of symmetry and that the extremal 
intercept is the central one, then the length of the 
radius vector r, extending from the center to the 
surface in the direction e (e being the unit vector), 
is determined by the formula 6 

1 

7tf2 (e)=: Xe (0)- ~ [Xe (u)- Xe (0)] ~~ (3.12) 
0 

We have introduced here the representation 

Xe (u.) = 2
1
7t ~ [Sm (C)]no (ne- u) dQn 

where [S m (()]11 is the area intercepted on the 

boundary surface 2 (P x' P y' P) = ( by a plane 
through the center normal to a given unit vector n, 
a(z) is the delta-function, and dO.n is the element 
of solid angle in the direction n. -

Having determined the form of the surface r (e), 

and knowing the quantity dS (1)/d(, one may 
readily determine the veloc~y of the electrons on 
the boundary surface. 

For the magnetic fields under which the measure
ments of the De Haas-Van Alphen effect have been 
conducted (H""' 104 gauss) the periods observed 
experimentally for the oscillations are determined, 

as we have pointed out, by those zones having an 
anomalously small number of electrons; for this 
reason the method described above can be used to 
reconstruct the Fermi boundary surface for these 
zones alone. Measurements in considerably 
stronger fields are needed before it will be possible 
to draw any conclusions regarding the form of the 
boundary surface for the normal energy zones. 

APPENDIX 

We shall evaluate the integral 

1=\\dP'd iJS(E',pz) 
J.l • Pz iJC: 

X exp {i e:~-I S (E', Pz)- 2o.k·;i} 

in which the region of integration is bounded 
by the straight line E '= E and the curve 

6 I. Lifshitz, and A. Pogorelov, Dokl. Akad. Nauk 
SSSR 96, 1143 (1954). 

S(E ', p) = 0. We shall not specify the extreme 1 y 

weak dependence of y onE' and p ,· 

Assuming that aS(E ', p )JaE '=I= 0, we may 
conclude that the primary contribution to I is 
provided by integration in the neighborhood of the 
point on the boundary of the region of integration 
E'= E for which aS(E, p )japz= 0, in the vicinity 
of the pointE '"" p z "" 0, for which as(o, p) /iJp z"" o, 
and about the peaks of the region of intcgratiol'. 7. 

1) In integrating about the stationary point on 
the straight line E '"" E we expand S(E : p ) in a 
power series in (E '-E) and (p - p ) (p z z m m 
corresponding to the stationary point), stopping 
after the first nonvanishing terms: 

I _ iJS(E,pm) f. llc "('~ ) 2 k'} 
1- at· exp'l.te!H'-' .c,pm- 7t q 

E Pm+b 

X \.' dE \.' d { . kc [(E' ~~) as .l .l Pz exp t eMf -- L~ 0 E 
E-o Pm-0 

After further computation we obtain 

I ~ (e'liH)'/, V~ {. kc r;-
1 kc !o2Sfo 21'/, exp te'liHS(L,pm) 

Pz m 

The sign of the last term in the exponent agrees 
with the sign of a2S(E, pm)/ap~. 

In computing the integral we have made use of 
the following asymptotic formula: 

~ f(x)exp{±iW(x-x0 )}dx ... 

f r (n + 1) {+ .11 + 1 } 
~ I! wn+l exp - 1, -2-7': (\~·~ 1), 

assuming that in the neighborhood of x = x the 
0 

function f (x) has the form f(x) "' f (x - x )n. n 0 
The expression obtained for / 1 determines the 

oscillatory part of ](k); if it is inserted into equa
tion (2.12), settingS (E)= S (E, p ) , the latter m m 
will yield (2.13). 

2) Designating by ±p 0 the values of p z 

corresponding to the peaks in the region of 
integration, we investigate the integral in the 

7 J, Corput. Proc. Acad. Sci. (Amsterdam} 51 650 
(1948). , 
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vicinity of one of the peaks 

Po E 

/2 ~ iJS (~,/o) e-2'1tlliy ~ dpz ~dE' 
p,-o 

X exp {i e~~ [ (Pz- Po) 0~~ + (£'- £)~~ n 
The lower limit of the integral over E ' lies on 

the curve S(E: p z) = 0. Near the peak it is 
possible to make the substitution 

I (iJS I iJS \ 
E =E+ (Po-Pz) ,opo iJE) 

With substitution of variables we have 

(et H' 2 e-2'11./tiY (' 0 ct" 0 

/2 ~ kc) iJS (E,po)Jdpo j dxe-zx j dye-'Y 
0 0 

Computing the integral using the above formula 
we obtain: 

l ~ ( e1iH)2 sin 27tqy- cos 27tky (I + 0 ) 

2 \ lzc iJS (£,Po) I Gpo ta 

where a is some real quantity; its value is not 
important, since we shall be interested only in the 
real part of!. 

Inserting / 2 into (2.12) we obtain the correspond
ing contribution to the real part of J(k): 

Re {J(k)} 

(E-e) 
~ e1iH Sin 27tky- cos 27tky r f ~0 dE. 

c 21tk2 j iJS (E,po) I iJ Po 
0 

Noting that the region of integration has two 
symmetrical peaks, we write the expression for 
that part of the thermodynamic potential n and the 
magnetic moment M which is determined by the 
quantity / 2 in the form: 

Q = _ V ..;._ (e1iH)2 _!_ ~1 sin 2n:ky- cos 27tky 
1 3 c 7t3 2.J k2 

k=i 

oo t(E-~)dE x r (oo) 

j iJS (E,po) I iJ Po 
0 

2 00 
M = V 2 ~ H""' sin 27\"ky- cos 27\"ky 

7\"a 1ic2 k.J k'l 
k=l 

oo t(E-~)dE 
X\ H 

J iJS (E, Po) I iJpo 
0 

(P.l) 

(P.2) 

These expressions describe the constant part of 
the diamagnetism of the electron gas. In the case 
of the quadratic dispersion law (3.1 )iJS(E, Pz)/~ 

--- ~0 
=- 'lny 2mE and (P .2) goes over into the 
familiar Landau formula. 

In the general case, however, our formulas for 
the constant part of the diamagnetic susceptibility 
may turn out to be incorrect, since it is impossible 
to use the quasi-classical energy levels in the 
vicinity of S(E,p) = 0. The diamagnetic 
susceptibilityof the electron gas is determined by the 
electrons near the Fermi boundary surface8 , while 
the expressions (P .1) and (P .2) are determined by 
all of the electrons together. 

3). One can readily convince oneself that 
integration about the point E '= p z == 0 yields a 

a contribution to the real part of I which is small 
in comparison with the real parts of / 1 and / 2 ; we 
shall not, therefore, investigate it. 

B R. Pelerls, Physik. 80, 763 (1933); A. Wilson, 
Quantum Theory of Metals. 

Translated by S. D. Elliot 
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