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I N' the last few years there have appeared a 
number of articles 1" 3 in which several premises 

of the theory of Langmuir probes have been subject 
to criticism. The purpose of the present paper is 
to compare Langmuir's theory with the exact 
theory of spherical probes developed in reference 
4 for low pressures and for the condition of nega
tive probe potential. Under these conditions, 
L · ' b · · 5 • 6 f II · angmuu s as1c assumptiOns are as o ows . 

1) The actual potential distribution is replaced 
by potential cp(r) which differs from zero in a 
certain range of radius r8 (in the sheath), and 

equals zero in the remaining space. Plasma out
side the sheath is undisturbed. 

2. Within the sheath there are only ions. This 
determines the sheath boundary. Potential dis
tribution inside the sheath is in accordance with 
the three-halves-power law with zero initial 
velocities. 

3. Pressure is assumed to be low and, for 
given probe potential, whether a p_article 
arrives at the probe is determined by the threshold 
parameter p and by particle velocity at the sheath 
boundary. If r m is the minimum distance from the 
probe reached by an ion, then 

[ 2e<p (r m) J 
p2 (r m v) = r;, 1- Mv2 . 

where e and M are ion charge and mass. In the 
case of attraction, e cp(,. ) < 0. In accordance 

m 

(1) 

with assumption 1, p = r when r > r . Depend-. m m s 
ing on cp(r) and v, the relaion between p and r m 
may be monotonic or nonmonotonic. This is shown 
in the graph for a fixed cp(r) and for several values 
of v, where curves a, b, c, d correspond to de
scending values of v. The graph shows that above 
a certain velocity the curves exhibit a minimum 

' which lies within the sheath. The variable p which 
is determined by Eq. (l) acts as a target parameter 
only to the minimum point; and only the right side 
of the p ( r m) curves has a physical meaning. If 
the target parameter is smaller than the minimum 
value of Eq. (1), then the motion is of threshold 
value, and the particles are captured by the probe. 
The radius of the threshold sphere, r0 , (i.e., the 
value of r at which Eq. (l) is at a minimum), m 
differs from probe radius and is a function of 
velocity v. 

It is shown in reference 4 that for any (mono
tonic) potential, currect into the probe is de
termined by the minimum value of Eq. (1), and 
equals 00 

F = ~ 4rtp2 (r0v) f (v) V 3 dv, (2) 
0 

where f(v) is the number of ions in a unit phase 
volume at a large distance from the probe. 

In Langmuir theory 5 , current to the probe is 
determined by probe potential and sheath dimen
sions, and is independent of potential within the 
sheath. This is a consequence of the assumption 
that when the square of the radial velocity of an 
ion, formally calculated on the basis of the law of 
conservation, is not negative on the probe surface, 
then it is also not negative elsewhere. This in 
tum leads to the assunrtion that Eq. (l) has a mini
mum on the probe surface, i.e., that there is no 
threshold motion. However, in Langmuir's model 
with a sheath, Eq. (l) is known not to he mono
tonic, and its minimum is not located on the probe, 
at least at sufficiently small velocities (threshold 
motion). This contradiction in Langmuir 
theory becomes obvious from the fact that, to as
sure a particle reaching the probe, aside from 
the requirement that the square of radial velocity 
on the probe surface must be positive, the ad
ditional independent requirement is needed that 
radial velocity on sheath surface must be positive. 
The first condition is equivalent to p 2 being 
smaller than the right side of Eq. (l) on the sur
face of the probe; ·and the second, that p 2 is 
smaller on sheath surface. If the minimum value 
of Eq. (l) occurred on the probe, then the second 
condition would he a consequence of the first 
condition. Actually, during derivation,occasions 
arise when the second condition is met hut not the 
first. This is especially clearly brought out in 
the form of Langmuir theory used in reference 6, 
where the expression for ion probe current is 
based on the assumption that all ions may be 
divided into two groups: 
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v > V- 2ecp (a) I M [ (:' ) 2
- 1 J 

(for these velocities an absence of threshold 
motion is assumed, i.e., r 0 =a); and 

v < Jf- 2ecp (a) 1M l c: y -1 J 

(3a) 

(3b) 

(for these velocities it is assumed that the motion 
has a threshold val.ue, and that the threshold 
sphere coincides with sheath boundary r8 ). 

{/ r 

Condition (3a) leads to the conclusion that p (r s ) 
> p(a).Curves a and bin the graph satisfy this 
condition. However, with curve b there is threshold 
motion, and r 0 >a. From condition (3b) it fol
lows that p ( r8 ) < p (a). Curves c and d satisfy 
this requirement. It is obvious from the curves 
that in this case r0 < r . Since for curves of type 

2 2 s 
b, p ( r 0 v) < p (av), and for curves of type c, 

p 2 (r0 v) <p 2 (r8 v), therefore Eq. (2) shows that 
calculation of current Fin a Langmuir model with 
a sheath, using the above method, results in 
values of ion probe current known to be too high. 
As a matter of fact, even calculations using 
Langmuir's equations result in ion current values 
smaller than those obtained by experiment. This is 
due to the fact that assumption l, which does not 
allow for a field outside the sheath, and which as
sumes that ion velocity at the sheath boundary is 
equal to velocity at a large distance from the probe, 
constitutes a poor approximation for ions. An approxi
mate expression for ion current, taking into account 
the field outside the sheath, is given in reference 
3. 

Assumption of three-halves-power law potential 
distribution inside the sheath is proper when ions 
inside the sheath are moving radially. Since, in 
Langmuir's model, the threshold sphere lies with
in the sheath, use of the three-halves-power law 

is not proper. At the same time, for assumptions 
made in reference 3, the threshold sphere lies 
outside the charged sheath, and three-halves-power 
law can be applied. 
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Adiabatic Process at High Temperatures 
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I N connection with the effect of thermal ioniza
tion on the thermal properties of gases at high 

temperatures 1, it is of interest to consider an 
an adiabatic process, taking the thermal ionization 
into account. In this case, the original equation 
for an adiabatic process will have the following 
form: 

(l) 

where dV is the increase in volume, / 1 is the 
energy of single ionization, dU' is the increase in 
internal energy of the gas, dN 1 the increase in the 
number of ions in the heating of the gas. 

The expression pdV can be found from the 
Mendeleev-Clapeyron equation: 

pdV = 
(N + N 1) kTdV (2) 

v 
The internal energy of the gas can be written in 
the following form: 

(3) 

Denoting the degree of ionization by x = N /N and 
substituting Eqs. (2), (3) in Eq. (l), we obtain the 
equation 

3 dT ( 3 I ) dV -(l+x)- + -+-1 d.x+(l+x)- =o.(4) 
2 T 2 kT V 




