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Properties of matrix-tensors are utilized for the investigation of real spinors in curvilinear 
coordinates. It is shown that one need not replace ordinary derivatives of spinors by more 
general derivatives. In connection with this, contrary to the opinion that is widely held, the 
equations of Dirac and other analogous relativistically invariant differential equations, by 
nature, do not change their form in transformation into curvilinear coordinates. The problem 
of generalization to the case of pseudo-Hiemannian space is considered. It is significant 
that one can explain the appearance of a term with the factor m0 c I iT in the equation of 
Dirac, if we regard the space, not as pseudo -Euclidian, but as pseudo-Hiemannian. 

I. INTRODUCTION 

I N earlier publications 1"3 , it is shown that real 
spinors, applied to the description of the state 

of individual elementary particles, must be ex
amined as parameters defined by certain primary 
tensors. Thus, in order for it to be possible to 
write down appropriate equations in curvilinear 
coordinates, and in order to discover ways of pos
sible generalization, it is necessary to examine 
the question of real spinors in curvilinear coordi
nates and pseudo-Riemannian space. The method 
by which it is possible to do this is based on the 
law of transformation of a component tensor under 
change from one coordinate system to another, pro
vided that the appropriate related matrix is em
ployed. It is necessary to go into some detail on 
this point, if only for the reason that the results 
obtained in this case are essentially different 
from the results of a series of authors who have 
attempted to generalize the equations of Dirac 4 -l 0 

The question of writing the equations for 
elementary particles, containing real spinors, in 
curvilinear coordinates and consequent generaliza
tions in the case of pseudo-Riemannian space 
should present considerable physical interest. 
The general theory of relativity showed 
that mass, energy and momentum appear to 
be related to the properties of space. Various in
vestigators11 hold that the general theory of 
relativity is, above all, a theory of gravitation. 

1 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR. 25 
653 ( 1953) • 

2 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 25 
667 ( 1953) • 

3 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 29, 
166 (1955); Soviet Phys. 2, 240 (1956) 

4 
. V. A. Fock, Z. Physik 57, 261 (1929); Zh. Has. Fiz.-
Khim. Ob., Fiz. Ch. 62, 133 (1930) 

5 H. Weyl, Z. Physik 56, 330 (1929) 
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It is impossible to agree with such an opinion. The 
fup.damental meaning of the general theory of 
relativity consists of the following: it p~rmits 
us to find important properties of energy ( and 
mass) and momentum. and to display the close 
connection between these and the properties of 
fom•·dimensional space-time. We should consider 
the theory of gravitation and certain confirmations 
of the general theory of relativity, of an experi
mental character, as confirmation of the correct
ness of the 11:eometric treatment of important 
physical quantities--components of the energy 
tensor--momentum. As for the theory of elementary 
particles, it appears characteristic that the 
question of the more profound nature of mass, 
energy and momentum remains unclear. Thus, for 
instance, in the equation for the electron the rest 
mass m0 is introduced in a purely formal way, but 
its real meaning is obscure, etc. Inasmuch as the 
geometric nature of quantities of such a type is 
confirmed for macroscopic phenomena, then, in 
their consideration in the theory of microphenomena, 
it is necessary to take into account the possi-
bility of their connection with the geometric 
characteristics of space. This question must be 
examined carefully in each case, in any re-examina
tion of the basic foundations of the theory of 
microphenomena. 

6 E. Schrodinger, Sitzungsh. Preus. Akad. 105 (1932) 
7 V. Bargmann, Sitzungsb. Preuf!. Akad. 346 (1932) 
8 L, lnfeld and B. L. van der Waerden, Sitzungsh. 

Preus. Akad. 380 (1933) 
9 J. ~· Schouten, J. Math. Phys. 10, 239 (1931) 

10 E. Cartan, Ler;.ons sur la theorie des spineurs, 
Paris, Hermann ana Cie., 1938 

11 
V. A. Fock, J. Exper. Theoret. Phys. USSR. 9, 

375 ( 1939) 
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2. MATRIX-TENSORS IN CURVILINEAR COORDINATES 

Let us examine some properties of matrix
tensors in curvilinear coordinates. Just because 
of a lack of knowledge of these properties various 
misunderstandings may arise in the discussion of 
IJlestions concerning real spinors. 

For definiteness, we shall distinguish quantities, 
expressed in orthogonal coordinates and investi
gated in previous discussions 2 , that will carry on 
the right hand the index zero, for instance, 

g.~f3• x~, R~, l 0 , etc. To transform to curvilinear 

d• ·oc ·oc ( 1 2 3 4 } • • coor tnates x = x x 0 , x 0 , x 0 , x 0 1t ts neces-

sary to replace R ~ by Roc according to the 
formula 

ox~ 0 

R·~ =ax~ Rr>, (l) 

m such a way that R = a X/ a ;"', where X 

= x~ R~ = xf3 Rf3 is "'a matrix- vector. Further, we 

have 
1/2(Ra.Rr> + Rr>Ra.) =ga.a 

OXY OX(; 
= _o . __ o go 'RY = gY"-R 

OX"" OX[3 Yll "' 

1I2(Rr>Ry + RYRr>) =o~, 

1l2 (R"- Rr> + Rr> R"') = g""r>. 

(2} 

From Eqs. (l) and (2) we see that matrices Roc 
and R "', under transformation from one system of 
coordinates to another, transform formally as com
ponents of a covariant and contravariant vector. As 
far as matrix-tensors are concerned, in general they 
do not vary under these transformations, for in-
stance, 

etc. 
Consider further in what form the matrix l must 

be defined in curvilinear coordinates. It is ex
pedient to write the formula for J 0 in the form 

lo = R~R~mR~ =- 4
1, sa.[3yllR~RgR~R~. (4) 

The minus sign is related to the fact that we as
sume E12 3 4 = 1, while E1234 = -L It is then 

clearly necessary to define J in the general case 
as 

(5) 

Further, making use of the fact that 

(6) 

and likewise that 

ox~ oxg oxJ ax: l ox~ I 
Sa.I3Yil ox"-' oxr>' ox y' ox ll' = OX v' Sa.'I3'Y'll' 

[see reference 12, Eq. (14) ] and 

na. ox~ 13 ( 13 oxl3 Y) ( ) 
~u = oxl3 R R = ox~ Ru , 7 

from Eqs. ( 4) and (5) we obtain 

lo= V-gJ, 1= (11V=g)J0 • (8) 

And, as in reference 2, it is necessary to obtain 
the formulas for the result of multiplying l by 
other matrices. For instance, 

Ra.l =; -lRa. =- i, Sa.l3yllR'(JRy Rll (9) 

etc. As a demonstration it suffices to transform to 
orthogonal coordinates and make p~e of the cor
responding formulas from Veblen 

Taking into account the fact that R"' or Roc 

appear as linear combinations of the four constant 
matrices R ~, and considering that explicit expres-
sions for matrices are defined acc~rding to Veblen, 
we obtain 

l'Ro = Rol 

whence the matrix R0 has one and the same value 
at any point of space. 

In conformity with the well-known formulas for 
differentiation of fundamental vectors in curvilinear 
.coordinates of pseudo-Euclidian space (see ref
erence 13, Sec. 7 7) we will have 

dRa. = r~I3Rydx13 , oRa. I ox 13 = r~aRy, (ll) 

where 

r~a = 1/2 gYil [(og lla. I oxS) 

+ (og813 1 ox"")- (og"r>l ox8)]. 

12 0. Veblen, Invariants of Quadratic Differential 
Forms, Cambridge Univ. Press, 1927 

13 P. K. Rashevskii, Riemannian Geometry and 
Tensor Analysis, State Publishing House of Technical
Theoretical Literature, 1953 
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From Eq. (11) it follows also that 

dR~ = - r~aRY dxf., iJR~ I iJxf. = - r~aRY. (12) 

Equations ( 11) and (12) permit us to find differ
entials and deriVatives of matrix-tensors, with 
components expressed in curvilinear coordinates. 
In this case there occurs an important property of 
such differentials and derivatives which we con
sider in the example oh a matrix-tensor of the 
second rank F = ~ F"' R"' Rf3. According to Eq. 

(11) we have 

tF= 11 

where 

+ P~" R~r1aRy) dx8 

= 1l2 (DP"P.) Ra.Rp.. 

nrP. = [(iJP'I. 13 1 iJxy) 

+ r;yrP. + rgyra 1 dxy. 

(13) 

(14) 

We see that DF"'f3 is the absolute differential of 
F"'f3. Hence, it follows that the ordinary deriva
tive of a matrix-tensor is expressed by covariant 
derivatives of its components according to 
formulas of the type 

iJP I iJxY = 1l2 (F~ 13hRa.Rr>· (15) 

In obtaining our formulas, the concrete form of 
the matrix R"' was not defined. It is only im
portant to emphasize that, for convenience in the 
choice of matrices, R 0 must be constant. This ·oc 
corresponds to that fact that, for a given constant 
vector at any point of space there must correspond 
the very same matrix, i.e., the law of correspond
ence between matrices and tensors must be one 
and the same throughout all space*. 

Finally, making use of Eq. (8), we find the ex
pression for the differentiation of the matrix I 

"' 1£ we define the law of correspondence in various 
forms for different points of space, then a set of com
pletely indeterminate conditions would enter. Thus, 
speaking no longer of the fac~ that it is necessary to 
take this into account in the differentiation of matrices, 
in ordinary cases we should not obtain either the results 
of reference 2 or of other works , since the funda
mental matrices were considered constant here. 

3. REAL SPINORS IN CURVILINEAR COORDINATES 

In reference 2, the components of a real spinor 
tjJ were defined as parEII!eters which were charac
terized by the assignment of an anti-symmetric 
tensor of the second rank, for which both invariants 
equal zero. Then tjJ is found from 

(17) 

Real spinors can also be defined by starting from 
the assignment of other primary tensors (see ref
erence 3 )*. For definiteness, we restrict our
selves to Eq. (17) and by its help take up the 
question of real spinors in curvilinear coordinates, 
although we would obtain other results if we were 
to examine, for instance, systems of other real 
spinors defined by certain tensors (as in reference 
3 ). Transforming to curvilinear coordinates, in 
accordance with Eq. (3) we obtain 

pxr>=ax~ axr> (-•l?'RoRJRg'f) (18) 
axY ax8 

0 0 

=- 'f'RoRa Rr;•f. 
We can also employ this formula for the definition 
of tjJ in generalized coordinates. 

In the transformation to curvilinear coordinates, 
the matrices R·~ in expressions for components of 

tensors are replaced by R"', but the corresponding 
real spinors remain invariant. Also, the matrix 
R0 does not change**. 

* We note that in the literature the term "real 
spinors" is already used, although their treatment dif-

fers from ours. That is, matrices R~, R~ R~ Coc =f, {3 ), 
etc. form the idea of hyE_er-complex systems of 
numbers ( sedenions ). The space in which this repre
sentation is realized, is often called spinor, hut the 
tensors of this space, according to van der Waerden, 
are also called spinors (or also wave tensors). If 
the matrices R·~ have real elements, then spinors with 
real elements are called real spinors (see reference 14, 
J. A. Schouten and D. v. Dantzig, Z. Physik 78, 639 
( 1932) , p. 657]. For our definition of real spinors, as 
parameters characterizing primary tensors, some of the 
properties coincide with the attributes of spinors, as 
defined above. But there are differences connected 
with the fact that a perfectly definite meaning is attached 
to our real spinors. ThllSj components of a real spinor 
are transformed only in rotations or reflections of all 
space, hut not in changes of the choice of the system of 
coordinates. In a symmetric transformation the general 
multiplier i can appear; otherwise, the problem arises as 
to transformation to a description in curvilinear co
ordinates, etc. 

** Moreover, these statements also apply in the 
case of doultle real spinors, defined in correspondence 
to the assignment of certain tensors. 

14 J. A. Schouten and D. v .. Dantzig, Z. Physik 78, 
639 (1932) 
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The problem of differential operations does not 
present complications, since expressions for the 
transformation of matrices R"' (orR"') are known 
Making use of Eq. (ll), for in~ance, we obtain 
the ordinary differential of F "'P: 

dF"f.> =(oF""'/ oxy) dxy 

= [- (o•f' I oxy) RoR"" R"''f 

- '\>' RoR" R"' (oi\J I oxy) 

i.e., 
DF"·B = - (dljl') RoRa. R"'"'r 

- "'r'RoR"Rild'f, 
(19) 

where the quantj,ty on the left is the absolute dif
ferential of F"' P. If we introduce the concept of 
"covariant derivative" of real spinors ( !fo) in 
conformity with the f~rmu~a y 

(20) 

- ·?'RoR" RB ('fh, 
where ( F "'f3 )y are ordinary covariant derivatives 

of tensors, then we get from Eq. ( 19) 

(21) 

so that ''covariant derivatives" of real spinors 
coincide with ordinary derivatives. Hence, there 
follows, in particular, an important consequence, 
that R~ (a ,pI a X~), for transform~tion into 
curvilinear coordinates, is replaced by R"'(a,p;axj, 
i.e., in spite of long-standing notions, it has in 
essence the same form (only now the matrices R"' 
are no longer constant). Thus, for instance, Max
well's equations for the radiation field with a fixed 
direction of propagation, written in the form of 
reference 15, have, in curvilinear coordinates, 
the form of 

R" ~ = o (w' R cll)i = o 
ox" ' 0 ox" ' 

From Eq. (2 2) one may conversely obtain the cor
responding Maxwell equations in the customary 
form but in curvilinear coordinates. Thus, multi
plying Eq. (20) on the left by ,P'R0 Rf3, and the 

transposed equation on the right by R0 Rf3,p, con-

15 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 25, 
675 (1953) 

solidating the resulting expressions, and making 
use of Eqs. ( 2), (l 0) and (!D), there resulte 

(F 13")" = 0 

etc. Likewise it wmld have been possible to 
write the equations of Dirac (expressed as equa
tions for two real spinors, see reference 16) in 
curvilinear coordinates, etc. 

Note that the equation of Dirac , written in the 
form indicated above, will have a different ~pear
ance from the Dirac equations in curvilinear co
ordinates, obtained by the method of other authors, 
inasmuch as more general expressions are used in 
them in place of the derivatives a ,p;a x"'. There-

fore, we shall consider this problem in some detail. 
It is a characteristic feature of researches con

cerned with the equations of Dirac in curvilinear 
coordinates and pseudo-Riemannian space that (if 
one looks at spinors from our point of view) there 
are various ideas mixed together: the transformation 
from one system of coordinates to another and the 
transformation from one isomorphic correspondence 
between matrices and tensors to others. As an ex
ample of this kind, consider the worlc of Fock 4 , 

since the views set forth there have received wide 
distribution and have had significant influence on 
other work*. Fock introduces at every point of 
four-dimensional space an orthogonal reference 
system and refers the components of the four
dimensional vector current to this reference 
system. Components of vectors in such a local 
system of coordinates are expressed by components 
of spinors and constant matrices, the same for all 
reference systems. Making use of our notation, 
this means that the matrices R~, corresponding to 
the basic vectors of reference system, are con
sidered constant at every point of space. But 
since the vasic vectors of the reference system, 
under transformation from one point to another, are 
changed, then in the use of curvilinear coordinates 
in ps~udo-euclidean space, the matrices R~ are 

no longer the same at any point, and are linked to 
one another by an appropriate transformation. In 
other words, different matrices correspond at each 
point to the same constant vector of pseudo-

* Detailed accounts of tltese.views are contained in 
reference 17. 

16 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 29, 
176 0955) j Soviet Phys. 2, 140 (1956) 

17 -
Ao P. Sokolov and D. D. lvanenko, Quantum field 

theory, State Publishing House of Technical- Theoretical 
Literature, 1952 
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euclidian space, whence the law of correspondence 
that depends on what fonn is chosen for the local 
reference system. For .iust this reason, our way 
of writing the equation of Dirac in curvilinear 
coordinates differs from the writings of Fock. 

Similar considerations apply also to other re
searches to which we have referred. 

4. TRANSFORMATION IN PSEUDO-RIEMANNIAN 
SPACE 

Separate fonnulas, written for curvilinear co
ordinates, are correct in the more general case of 
pseudo-Riemannian space. Here also for every 
point of space it is necessary to introduce matrices 
Roc or Roc' with the help of which the expressions 
for matrix-tensors are written out. Eqs. (I) to (9) 
apply here as before for the corresponding matrices. 
But it is necessary to keep in mind that, insofar as 
the space is no longer pseudo-euclidian, the 
matrices R;, R0 , l 0 will now characterize some 

locally-Galilean systems of coordinates, whereupon 
they can no longer be considered constant for all 
space (if only not to confuse a transfonnation from 
one system of coordinates to another, and the 
different character of an isomorphic correspondence 
between matrices and tensors). So far as the opera
tion of differentiation is concerned, the situation is 
considerably more complicated. If we write 

(23) 

then the right side will not be an absolute deriva
tive of the matrices Roc) (A prime is written to de
note this case . ) In fact, from Eq. (23) we obtain 

iJ' (iJ' R,.) iJ' (iJ' R,.) ,. a 
iJxY iJxfl - iJ.xfl iJxY = Bay[lR ' (24) 

where BByf3 = arsyl axf3- ar8{J/ axY +r£yrE{3 
- ~{3 r (~are components of the curvature tensor*. 
Therefore,. a'Roc I axf3 'can be derived only if 
B8yf3 = 0, i.e., if the space is pseudo-euclidean. 

For absolute derivatives we must write the expres
sion 

where matrices Y ~ characterize the departure of 

the space from pseudo-euclidian and for the latter 
must revert to zero. 

* Various authors denote components of the full 
curvature tensor differently. Our notation corresponds 
to that of reference 12. 

Real spinors in pseudo-Riemannian space must 
be defined as in curvilinear coordinates, i.e., from 
relations of the type F oc(3 = - t/J 'R 0 Roc Rf3 t/J, etc., 

but the matrix R0 will now, generally speaking, be 
differen£ for different points, and the question of 
differentiation and of differential equations, con
taining real spinors, becomes considerably compli
cated. Therefore, we limit ourselves to the selec
tion of a special case, when the matrices Roc at 
any point of space are linear combinations of the 
five constant matrices R(~ and I (O)' (We assume 
R( ~)and ] (O) are such that ~q. (l 0) is satisfied.) 
In this case the matrix R will also be cons\.·mt. 

0 . 
The meaning of the limitation that we have placed 
on the matrices Roc is that pseudo-Riemannian 
space is considered as a certain surface in five
dimensional pseudo-Euclidean space, for which 
there are constant basic matrices --either R(o) 
or l (O) (i.e., it will be a space of the first class 
in space, see reference 18 ). In connection with 
this, the derivatives of Roc will be linear combina
tions of the matrices R(o) and l(O) or RfJ and l, 

(26) 

i.e., where the nonvanishing character of 'IT~ i~ 
connected with the non-Euclidean nature of the 
space. 

It is not difficult to show that if Eq. (26) is 
satisfied, 

dR"' =oR,. d Y 
iJ.xY X ' 

(Z7) 

The deviation of the space from pseudo-Euclidean 
will be shown by the nature of the differential 
equations that contain real spinors. It is necessary 
to examiae how equations for primary tensors, 
which are written, however, in original fonn, and 
properties of space will influence the nature of 
transfonnation from equations for tensors into 
equations for spinors. 

Let us consider the case where the primary 
tensors. are vectors and pseudovectors with com
ponents p (:)and noc and the invariants and pseudo'-

invariants n l and n 2' connected with the co~ 

18 
L. P. Eisenhart, Riemannian Geometry, Princeton 

Univ. Press, 1926 
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responding rei ation s ( see references 3 and 16). 
n·oc is expressed by the real spinors t/J 1 and t/J 2 in 
the form 

(28)* 

For abbreviation w~ make use of the com
ponents Qoc = ( 1/y- g ) noc in place of the com
lponents vector of the pseudovector. 

Suppose that we have the relativistically in
variant differential equation 

(Q")ct = 0. (29) 

If the space be pseud~-Euclidean, then Eq. (29) 
would be obtained, in particular, from the following 
relativistically invariant equations for t/J 1 and t/J 2 : 

R"' a a.x"' 'f<1> = O; 
(30) 

R"' a 
a.x"' t\1<2> = o. (31) 

For pseudo-Riemannian space Eq. (29) no longer 
follows from Eqs. (30) and (31). 

Supposing that Eq. (26) holds, we consider the 
problem of the form to which it is ·necessary to 
generalize Eqs. (30) and (31), so that as before 
there will be equivalence with Eq. (29). From 
Eqs. (26) md (28) results 

(Q'")" = aQ" + r;"Qy (32) 
a.x" 

- ao/(2) R R"' . "' oo/<1> "' , 
- o.x" o t\1<1> + 'f<2>RoR a.x" + '!t"'t\1<2>RoN<1>· 

Consequently, in order that Eq. (29) hold for the 
operator it is necessary to add% rr::1 to the opera
tor Rrx<a;axoc) so that Eqs. (30) and (31) become 

R'" a~'" t\1<1> + 1/2'lt:N(l) = O; (33) 

R "' a I a.x"' t\1<2> + 1 2'!t:J'f(2) = o. (34) 

In fact, to obtain Eq. (29) it is necessary to 
multiply Eq. (33) on the left by t/J' R0 , but the 
equation transformed into Eq. (34f, on the right by 

* The presence on the right side of Eq. ( 28) of factor 

,; - u. which is equal to unity in the particular case of 
orthonormal basic vectors, is related to certain require~rents for the 
quantities tP(l)' tjJ( 2)' We examine just this case, there
fore, which here is especially easy to show, in what 
form terms which conserve the rest mass appear in the 

equations for·tP(l)• t/J( 2). Although the situation is 

actually more complicated, the principle of the problem 
remains the same. 

R tP( 1)' and to add the result. 
0Equations (33) and (34) will be the equations of 

Dirac without an external field (see reference 16) 
if we merely set 

(35) 

Thus, it seems that the appearance of a term 
proportional to the rest mass in the equations for 
elementary particles can be connected with the 
curvature of four-dimensional space. This result 
presents great interest of a fundamental nature, 
since it shows how a term characterizing the mass 
of a particle can ~pear in the transition from 
tensor equations in non-Euclidean space into equa
tions containing spinors. Already at that time, 
possibly, it has only approximate significance, and 
in the future theory of the internal structure of 
elementary particles, one must expect essential 
changes and refinements. 

In conclusion, we shall derive a formula relating 
"B with components of the curvature tensor. From 
Eqs. (26) and (5), taking account of Eq. (9), we 
obtain, after some computation, 

aJ = - 1/2 j) In g j- n"'r> R"' 
a.xr> a.xr> g (36) 

Taking into account that a2 Roc I a xY a xf3 
= a2 Roc I axf3 axY, we obtain the formula relating 
matrices Y~ [see Eq. (25)] with components of the 
curvature tensor 

aY~ oY~ r"' yB r"' ya B"' RB (37) a.xB - O.X y + B(> Y - BY (> = By(> · 

ll"ence, using Eqs. (26) and (36) for examination 
of our case, we obtain the following equations which 
rr ~ must obey: 

an~ r"' B a "' a In g 
--r:" + B(l'!ty- I'yt>'!tB _1/2--, '!t"' 
a.x" a.x" Y 

(38) 

i_ ('!t"''!t - '!t"''!t ) - B"' g 13 By y Bl3 - 8y[3 (39) 

This is found to be in complete agreement with the 
theory of space of the first class l see reference 
18, p. 238, Eqs. (59.3) and (59.4)]. 

We see that the TT ~are not related to the com

ponents of the curvature tensor in exactly the 
same way as the components of tensors of energy
momentum in the corresponding form in the general 
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theory of relativity. But, it is necessary to keep 
in mind that for elementary particles the concrete 
character of the connection between the mass and 
the properties of space does not necessarily have 
to correspond to the particular requirements of the 

theory, which are confirmed only for macro
phenomena. 

Translated by D. E. Spencer 
~2 
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Phenomena in the Vicinity of Detonation Fonnation in a Gas 

K. I. SHCHELKIN 

Institute of Chemical Physics, Academy of Sciences, USSR 
(Submitted to JETP editor May 10, 1954) 

1. Exper. Theoret. Phys. USSR 29, 221-226 (August, 1955) 

Phenomena in the yicinity of a detonation are discussed. It is shown in particular that 
in accordance with a previously developed theory 1, 2 explaining how slow burning combus
tion turns into a detonation, a detonation can occur in gas both at some distance in front 
of the slow combustion as well as in its immediate vicinity. 

INTRODUCTION 

T HE ~echanism wher~by slow com,~ustion of. a 
·gas m a tube turns mto a detonatwn was dis

cussed earlier 1• 2 and can be summarized briefly 
as follows: The expansion of the slowly-burning 
mixture causes motion and turbulence of the un
burned gases. The turbulence increases the 
velocity of propagation of the combustion relative 
to the gas, and this in turn causes an increase in 
the velocity of the gas--the combustion acceler
ates progressively. 

The accelerating combustion, acting like a 
piston moving in a gas-filled tube, produces 111 

adiabatic-compression wave. The slope of the 
adiabatic-compression wave front increases pro
gressively until a state and velocity discontinuity 
occurs in the gas. At the instant that the dis
continuity occurs, its surface separates the un
disturbed and uncompressed adiabatically com
pressed gas, the velocity of which is readily 
computed from the velocity of sound in the gas on 
both sides of the discontinuity. 

From the theory of random discontinuities 3 it is 
known that sue~ a discontinuity of state and 
velocity cannot propagate in the gas; it breaks 
into a shock wave, which travels through the 
unperturbed gas, and a rarefaction wave, which 

1 K. I. Shchelkin, Dokl. Akad. Nauk SSSR 23, 636 
(1939) 

2 K. I. Shchelkin, ]. Exper. Theoret. Phys. USSR 24, 
589 (1953) 

3 Ia. B. Zel' dovich and K. J. Shchelkin, 1. Ex per. 
Theoret. Phys. USSR 10, 569 (1940) 

propagates in the opposite direction, through the · 
adiabatically-compressed gas. At the place of 
shock-wave formation the gas experiences a 
density and temperature discontinuity, the surface 
of which is stationary relative to the gas. The gas 
temperature in the shock wave rises shwply be
cause of the non-adiabatic shock compression. 
This leads to a detonative ignition of the un
combusted gas--to the formation of a detonation. 

Once certain assumptions are made, the entire 
process lends itself readily to analysis; this was 
done with an accuracy to within constant multi
pliers in the reference quoted 2• The fact that in 
most cases the explosion actually occurs not in a 
single plane but over a certain length of the tube 
does not affect the argument substantially. It 
produces no change whatever in the qualitative 
picture of the detonation phenomenon and reduces 
only insignificantly the accuracy of the computa
tion of the distance between the ignition point 
and the location where the detonation occurs. 

In principle it is possible also to suggest an
other mechanism for the pre-detonation accelera
tion of the combustion in the tube, proposed by 
L. D. Landau, and based on the instability of the 
plane combustion front and the self-turbulence of 
the gas in· the region of the flame. In tubes, how
ever, it is the turbulence produced by the walls 
that always precedes the self-turbulence and de
termines the acceleration of the flame. To ob
serve the self-turbulence it becomes necessary to 
employ special measures to frevent formation of 
turbulence due to the walls . 

4 Kh. A. R~ipova, Ia. K. Troshin and K. I. Shchelkin, 
Zh. Tekhn. Fiz. 17, 1397 0947) 




