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Making use of the properties of real spinors, additional terms are found which make the 
equations for the electron used in non-relativistic quantum mechanics relativistically in­
variant. The second order differential equations found in this way, which connect the 
components of one real spinor, are simpler than those which are obtained through Dirac's 
theory. The relativistically invariant equations introduced are solved for the hydrogen 
atom in the absence of external fields. It turns out that in that case the usual fine struc­
ture fornrula is obtained, just as in the Dirac theory. It is shown that the considered 
second order differential equations can be obtained from a system of relativistically in­
variant equations of first order which, however, no longer contain one, but two, real 
spinors. 

1. INTRODUCTION 

A descriptive interpretation of the ideas and 
concepts used in non-relativistic quantum 

mechanics for study of the behavior of particles 
with spin l/2 was given in reference I. The prob­
lem of finding relativistically invariant equations 
for the electron must also be reexamined from this 
point of view. 

Currently, as is well known, Dirac's system of 
equations 2 is considered as the system of relativ­
istically invariant equations which characterize 
the behavior of an electron in various external 
fields (see also references 3-6 etc.). This choice 
was based on the possibility of getting the ordi­
nary non-relativistic equations from them in a 
special case and also on their ability to explain 
more exactly the available experimental facts. 
Most important of such facts is the existence of 
fine structure in the spectrum of the hydrogen 
atom, and its explanation by the use of Dirac's 
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equations is accordingly the chief argument in 
favor of the validity of the Dirac theory. It is ob­
vious that any relativistically invariant equations 
for the electron which claim to replace Dirac's 
system of equations must also reduce to the equa­
tions of nonre!ativistic quantum mechanics in a 
special case and at the same time explain expe­
rimental facts not explained by the latter. Above 
all, moreover, they must lead to a formula for the 
fine structure experimentally confirmed. 

Relativistically invariant equations for the elec­
tron, which satisfy the formulated requirements 
and which at the same time are simpler than the 
Dirac equations, will be obtained in the present 
paper. During the derivation of these equations 
we will make any hypotheses but will not be guided 
only by the fact that the equations of non-relativ­
istic quantum mechanics for the electron inter­
preted with the aid of the graphical concepts 
developed in reference l must be generalized in 
such a way that they become relativistically inva­
riant, i.e., that they don't change under arbitrary 
transformations of the general Lorentz group. We 
will need the mathematical apparatus developed in 
references 7 and 8. 

2. DERIVATION OF THE RELATIVISTICALLY 
INVARIANT EQUATIONS TO REPLACE 

DIRAC'S SYSI'EM OF 
EQUATIONS 

As is known, the components of the momentum 
operator and the energy operator which are used in 

7 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 25, 
667 (1953) 

8 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 28, 
524; Soviet Phys. 1, 411 (1955) 
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non-relativistic quantum mechanics, from the point 
of view of graphical representations of the states of 
particles with spin 1/2, must be written in the 
form: 

A d 
P.~ = - 1il iJxk ' (I) 

(see reference I). Therefore, on going over to four­
dimensional pseudo-Euclidian space, we shall have 
the following relations for a real spinor which is a 
"proper" spinor of these operators: 

(x4 = ct, p 4 = - E f c, :x = 1, 2, 3, 4). 

The Poe must transform as components of a four­
vector, since they are components of four-dimen­
sional momentum. Furthermore, we know the 
transformation rule for a rela spinor t{l under 
transformations of the Lorentz group. 

(2) 

Taking into account that, under arbitrary rotations 
and reflections of four-dimensional space, both 
sides of Eq. (2) must transform in like manner, we 
can determine to which of the fourth order real 
matrices considered in reference 7 the matrix I cor­
responds. It is easy to see that here there are only 
two possibilities: The matrix I must compare with 
I or- 1. Here, however, 1t must be considered not 
as a scalar (as has usually been assumed) but as 
a pseudos•~alar, which changes sign upon four 
dimensional reflections but remains invariant for 
four-dimensional rotations. More exactly, this is 
the sole component of the matrix-pseudoscalar 
T ="hi, and one must regard the numerical value 
of Planck's constant as the absolute value of the 
corresponding pseudoscalar. 

The fact that the matrix I should agree with I 
rorrect as to sign leads to the imposition of a res­
triction on the choice of the remaining basic 
matrices considered in reference 7. Namely, they 
must correspond to the ones which were presented 
in the first: or the second line of Table I from refer­
ence 7. For definitness,we shall assume that 
I= I ( the choice of sign has no significance), so 
that 

Rk = BSk, R 4 = B, R = B!, J =I. (3) 

Thus, from the postulate of relativistic invariance, 
it follows that Eqs. (I) and (2) can be written in 
the form 

-ttl (a·~ 1 ax") = p""'f, (4) 

where 1t is the component of a pseudoscalar. We 
note that the replacement of 1i by -1i corresponds 
to a change of sign of I= I. It is well known that 

the results of non-relativistic quantum mechanics 
do not change if i is everywhere changed to -i . 
Therefore they do not change if 1i is changed to -1i 
in the basic formulas. 

As the initial non-relativistic equation for the 
electron, to which we shall have to add the terms 
which make it relativistically invariant, we can 
take: Pauli's equation, writing it in the form (S) 

[- i'n :, + 2~0 k~ (- 1ii a:k + : A"Y - e'f] ~o 
3 

efi "H . 0 + -2-- .LJ h 0 h~o = , 
mo c k-=1 

where e is the electronic charge and A k are the 
components of the vector potential. (See, for 
example, reference 9 etc. ). 

From this equation (more exactly, two equations) 
it is necessary to go over to a real relation 1, 

since, on consideration of arbitrary transformations 
of the Lorentz group, the original entity, for which 
the law of transformation is defined, is a real 
spinor, and a spinor of first rank is not suitable 
for this purpose. Substituting for all the complex 
quantities in Eq. (5) the real quantities corres­
ponding to them, we get 

- (6) 

[- nJ :t + 2~0 ± (- 1iJ a~k + : A"Y - e'f] ·~o 
h~l 

3 

et~.- "R R"H •li 0 + 2m c .LJ 4 k , o = . 
0 k=l 

In order to make Eq. (6) relativistically inva­
riant, it is necessary to replace the operator 

a 
- ttl--L eA4 

ot ' 

1 "r a e \2 A 
-L-- .L.d -hJ-k + -Ak), 4 =- 9 
' 2m0 h \ ox c 

~y 
1[( iJ e )2 

2mo - - nJ ax' + 7 A4 

+ "(-nJ ~ + !_Akj\2 
--:- m 2 c2], L.J axk c 0 

h 

and R4RkHk by-I(RRkHk+R4RkEk)=-IF. (7) 
Thereby Eq. (6) goes over to 

[- (- hJ d:4 + f A4r + f (- nJ a~li + + Ak r 
-:- m2 c2 - .:!!:.. J f] •li = 0 

I 0 C • ' 

9 D. I. Blokhintsev, Principles of Quantum Mechanics, 
GITTL, 1949 
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where t/Jis a real spinor. The Pauli equation (5) 
or (6) is obtained from Eq.(7) if we take 

m c 2 t 
'I'= [ exp ( - f.......JL_) J tjJ , disregard the quan-

ti 0 
m ~2 a2 f m e 2¢2 m e~ 

tities 0 0 0 ,/, 0 'I'O'--
c2 at 2 c 2 c 2 

/Jx2.. ¢ + f ¢ ~ ) t/1, and also discard the term \ at at o 
_e~JR4 !£. 

c 

The relativistic invariance of Eq. (7) comes out 
of the following : If one denotes the expression in 
the square brackets by the symbol G, then upon a 
similarity transformation characterized by the 

matrix A1 , G goes over to A 1 G A -1 . Therefore the 
the equation Gr.fr = 0 goes over to1 A1 GA i1 (A 1 rjJ) 
=A 1 G rjJ = 0, whence it follows that it is actually 
relativistically invariant. 

We rewrite Eq. (7) in the form 

( E2 - c2 f P~- m~ c4 +en cJ F) •v = 0, (8) 

"' a E = nJ-.- _Leo 
df I ' ' 

' a e P·= -nl-+ -A, .. 
H. ax" c . 

and this is the desired relativistically invariant 
equation which replaces the Dirac system of equa­
tions. (Strictly speaking, Eq. (8) is a system of 
four linear differential equations with real elements). 

Already at first sight it is evident that the sys­
tem of equations (8) is simpler than that which is 
obtained from Dirac's equations as a result of 
squaring. Actually,there are there four complex or 
eight feal functions, whereas our problem is reduced 
to the finding of four real functions-the components 
of a real spinor. Also, Pauli's equation is obtained 
from Eq. (8) considerably more easily than from 
Dirac's equations. The sense of Dirac's equations 
in the usual understanding is also different from 
that of Eq. (8). Inasmuch as the components of a 
real spinor are parameters which characterize a 
four-dimensional vector and an antisymmetrical 
tensor, Eq. (8) is, strictly speaking, a system of 
equations for the determination of four dimensional 
tensors. However, in the present article we shall 
not discuss in more detail the similarity and dif­
ferences between Eq. (8) andDirac's equations. We 
also postpone the general analysis to later articles. 

In the current work, we restrict ourselves to the 
discussion of the electron in a hydrogen atom and 
to the calculation of the fine structure. 

Before going over to the solution of this problem, 

we shall write Eq. (8) in a somewhat different form. 
Using Eq. (3) and reverting from real to complex 
quantities (assuming JR 4 Rk +-+iak, rjl~(. etc.). 
we find that the fundamental relativistically inva­
riant equation {8) for the electron can he written in 
the form 

[ (n.i gt + eqJ y- c2 f (-hi a~"+ 7Any (9) 

- m~ c4 +· enc (ian En- crnHh)] ~ = 0. 

In such a form it has a particularly simple appear­
ance and is convenient to use for solving concrete 
physical problems. However, for the consideration 
of questions connected with relativistic invariance, 
it is expedient to use a form of the type of Eqs. 
(7) or (8). The point is that under arbitrary trans­
formations of the Lorentz group ,; no longer is 
multiplied from the left by some matrix, in the way 
this occurred for three-dimensional rotations, hut is 
transformed in a more complicated manner. More­
aver, if we admit complex quantities, then we can 
no longer use the very simple transformation ma­
trices (four dimensional tensors), and as a result, 
a demonetration of relativistic invariance becomes 
considerably complicated, etc. 

3. EQUATIONS FOR THE ELECTRON IN A 
HYDROGEN ATOM IN THE ABSENCE 

OF EXTERNAL FIELDS 

For the electron in a hydrogen atom, we can as­
sume 

(10) 

We will consider that the electron is in a stationary 
state, such that 

1 . a , E~ it fii :; = ~;:, ~ = [exp (-- iEt I h)] ~o• ( 11) 

where ,; does not depend on time. Therefore Eq. 
0 

(9) takes the form 

[ 1 [ r e2 )2 ] 
V' 2 + n2c2 (E + r, -- m~ c4 (12) 

whereupon in the following we will use the abbre­
viated notations: 

e2 x 1' crh 
!X= 'he' cr(r) = -,-, 
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2 =o _1_~(. ~~) _1_ c• 
V' &q> sin.& d.& Slll a.&/ + sin2 4Jo cJ<p2 • 

Our problem consists of finding the energy 
levels 2, = E - m0 Jl and the corresponding charac­
teristic functions of Eq. (12). For its solution it 
is necessary to find a system of operators which 
commute with the operator 

1 [( eB )2 J V' 2 + n2 c2 E + r -- m~ c' (13) 

ir:xa(r) 1 ( a 2 d \ +--=- -r -I 
r 2 r 2 or dr; 

and with one another. Then the "proper" functions 
~ of equation (12) can be chosen in such a way 
that they will also be characteristic functions of 
all of these operators at the same time. 

We can attain a separation of variables if we as-
. (Y1 (.&, q;)) 

sume ~0 == f(r) 
Yz(.&,'f) 

whence 

--(v~'~' + irxcr<r>) (~:) = Ly = l.y. (14) 

Then the energy levels of the electron in a hydro­
gen atom will be determined from the equation 

[ a2 2 a 1 [( e2 )z ] 
dr2 + 1-;: dr + n2 c• E + r - m~ c' (15) 

- ~]f(r) = 0. 

It is not difficult to verify that the operators (16) 
commute with (13) and L. 

Mk = n (- iskis Xj a~s + ; (jk). (16) 

This can be seen from the following: if we set 
[l,.li] =iii - 8i, then 

[ ~kjs X.}!_ 
~ I a.r' 

.xf at] 1 
-- =-skis X·crs 

r r 1 ' 

II -'\ "2 "'2 "'2 1\2 
Furthenoore,theoperators L,Mk andM =M1 +M2 +M3 

commute with one another. Therefore we can 
choose y1 and y2 such that y, and consequently 

also J: will be a characteristic function of the 
~ O' 9- ~ " 

operators L, M3 and M2, simultaneously, i.e., 

M3y=nmy, 

Jl1zy = n2j(j + l)y, 
(17) 

(18) 

and the state of the electron in a hydrogen atom 
will be characterized by the quantum numbers m,j, 
,\ and the radial quantum number which we introduce 
below. 

From the commutation relations between the 
M k , as is well known, it follows that for a given 

j, m can take the values m =- j, - j + 1, .... , j- 1, 
j ( see references 6, 10, ll, etc.). It is possible 
to show, that from the stipulations (17) and (18) it 
follows that y has the form: 

y = (~~) (19) 

(
(CrPr. m' + Cr+~Pi'+l. m') eim''~' ) 

= ( . I j' --.m' . • / j' + m' +2 ) . , ' -v f+m'+i CrPr,m'+I+ V j'-m'+i Cr+Ipi'-f-I,m'+I et(m+1>'~'/ 

where C i,, C i, + 1 are arbitrary constants, j '= j - ~ 

and m' = m - ~are integers, 

We shall develop the proof of these assertions. 
The functions y and Y. can be expanded into a 

Laplace series, i~e., pre;ented in the form 
p., , = • I ('2j' +1) (j'- m')! 

1 • m V 2 (j' + m')! 

X 
1 j'' m' 

(1 - xz)m'f2 ___ d.' (xz- I)i' 
zi'j'! d.xl'+m' • 

x =cos.&. 

00 

(20) Yl = ~ CknPn,k eik'll = ~ Akeik'll, 

h, n k=-co 

10 L. D. Landau and E. M. Lifshitz, Quantum 
Mechanics, GITTL, 1948 

11 
E. U. Condon and G. H. Shortley, Theory of 

Atomic Spectra, Cambridge, 1935 
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co 

Y2 = ~ DtwPn,k eikr;> = ~ Bkei"-"'. 
k, n h.= -oo 

Substituting these expansions in Eq. {17), we get 

(21) 

m'=m-~/2 

(m' is an integer). Here we can assume 

Bm'+I = ~ DtPz, m'+l (22) 
l 

(C l and D z are constants). Further, using the 
the fact that 

1+1' 
0 ) ' 

we obtain 

( 
I . a 

1 -t-
- '2 - 2 3 (Jtp 
1;,2 My- - V&,'fl + T +I ' ' - i. ( ~ - il~) ))' ( ~: ) 

(23) 
' - i (ll + il2) \ 

t- I 
O<p 

Now use is made of the fact that 

(24) 

=- iV(l + m' + 1) (l- m') P1, 

1/ el (m±lf,)"' tn' - m - lf m± , , - 2 

{See references 6, 10-12, etc. In this series of 
works, functions are used which ¥e different from 
the P z m 'we use by the factor {-l) m. On using them, 
the sign before the right-hand side of (24) must be 
changed). 

Substituting the expression (21) and (22) in (23) 
and taking (24) into account, we get 

[l(l + 1) + 3 / 4 + m'- j(j + 1)) Cz 

- VU + tn' + 1 )(l- m') Dz = 0 

(l~m'), 

- V(l + m' + 1)(1- m') Cz 

(25) 

(26) 

+ [l(l + 1)- 1/,- m'- j(j + 1)]D1 = 0 

(l?::-m'+1). 

In order that Eqs. (25) and (26) have a non-zero 
solution, it is necessru:y that for l L m '+ 1, 

l(l + 1)+ 3/,+m'-J(J+ 1) 

- V (l + m' + 1) (l - m·) 

- vu + m· + 1)(l- tn') I 
z (l + 1) -- 1 I, - m' - J U + 1) 

=0 (27) 

or 

Thus, there are possible two solutions of Eqs. 
(25), (26), corresponding to the two possible 
choices of sign in Eq. {28), and the general solu­
tion will be a linear combination of these. We 
shall find it. If l = f - % = j ', then 

D·, __ 1/ j-m' 
J - V j+m'-t-1 Cr, (29) 

and if l = j + %= j'+ 1, then 

12 H. A. Bethe, Quantum Mechanics of the Simplest 
Systems, ONTI, 1935 

(28) 

VI+ m'+2 D·r = C·1 J+l j'-m'+1 J-t-1• 
(30) 

so that as the general solution, we actually get 
Eq. (19). 

Now we can go over to the analysis of Eq. (14), 
from which must be found the third quantum number 
,\ and the ratio of C . to C . . 

J'+l 1' 
Making use of the fact that x 3 = r cos 0, 

xi. ± ix ~ = r sin () e ±i¢, for the matrix a(r) =I.tk<Y,; r 
we can write the expression 
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- Jf j'~-:~~ 1 [}' (j' + 1)- A] CrPr, m'+t (33) 

+ 1/ !'+m:+2[(j' + 1){j' +2)-A]< V ;'-m +1 

Therefore, taking Eq. (19) into account, we can 
rewrite Eq. (14) in the form of a system of two 
equations: 

U' U' + 1)- ),] CrPj', m' (32) 

+ [(j' + 1) (j' + 2) - /,] Cr+1Pi'+1. m' 

Crl-Ipi'+1,m'+1 - ia. [sin &Pr, m' 

1/ i' m' ] + V i + -:;. +1 cos &Pr, m'+t Cr 

- ia. [sin &Pr+1. m· 

/ f+m'+2 ]c 0 - J ., , +' cos &Pi'-f-I, m'-f-1 F+t = · 
j-Ill • 

+iiX,; -j~ ~':~ 1 sin &Cr+t Pr, m'+1 
Further, we use the fact that from the properties 

. ,lf+rn'+2 . (IC P _ 0. 
- ta. ., '+i Sill u P+1 i'-f-1, m'+1- , 

of P. (reference 12, pp. 383-4 ) it is possible J, m, J _,, to derive the following relations: 

-cos &Pr, m' + (V j' -- m' I Vi'+ m' +I) sin&Pr, m'+t 

=- (VU'- m' + 1)(2J' + I)/VU' ---j- m' + 1)l2i' + 3)) Pr+1,m·; 

- cos &Pr+1 • m' - ( V }' + m' + 2/l/ )' - m' + I) sin &Pr+t, m'+1 

=- (VU' + m' + 1)(2j' + 3)IVU'- m' + 1)(2)' + 1)) Pr, m•; 

-sin &Pr, m'- (VJ'- m' /Vi'+ m' + I) cos &Pr, m'+t 

=- (VU' + m' + 2)(2j' +I) I VU' + m' + I)l2j' + 3) Pr+1.m'+1; 

-sin &Pr+1 , m' + (Vi' + m' + 2 I V7=!1i'+l) cos &Pi'-f-1. m'+1 

= (VU'- m')(2J' + 3)/VU'- m' + I)l2J' + 1))Pr, m'+1· 

Taking into account these formulas and comparing 
the coefficients which occur with the P . , 

I, ,m, 
P. + in Eq. (32), we obtain from Eq. (14) /' I,m., 

f}'(j' + 1)-A]Cr 

= ia. (VU' + m' + 1)(2}' + 3) 

VU'- m' + 1 )(2j' + I)) Cr+u 

[(j' + 1) ()' + 2)- /,] Cr+1 

= irx (YU' - m' + I) (2)' + I) 

}f(j' + m' + J) (2}' + 3)) Cr. 

(38) 

(39) 

Equation (33) leads to the same relations. 
From Eqs. (38) and (39) we obtain 

• w /u + m' + 1) ('.!.t' + :~) 
trx. V (f - rn' + 1) ('2j' + 1) 

. wf(i'-m'+l)f2i'+1) 
= .ra. V (j' + m' + 1) (2j' + 3.) 

IU' + I)(j' + 2)- Al, 
whenee 

A= (j' + I)2 + Y(}' + 1)2- a.2. 

(34) 

(35) 

(36) 

(37) 

(40) 

( 41) 
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We see that the quantum number A for given j 
and m can take only two values, corresponding to 
the two possible choices of sign in Eq. (41). If 
one neglects the quantity a 2 and in Eq. (41) con­
siders a 2 "" 0, then for this limiting case, instead 
of the quantum number A we can introduce another 
quantum number 1 , defined according to 

l,=f(l + 1), l>O. (42) 

This quantum number, for a given j and m can take 
the following two values: 

fl = J' =}- 1/2, f2 = }' + J =c} + l l2• (43) 

Conditionally, we can consider that even in that 
case where we do not neglect the quantity a 2 , 

the state of the electron in a hydrogen atom is 
still characterized (aside from j and m) by the 
quantum number l (instead of A ), which can take 
the two values l 1 =j -~and l 2 =j+ ~ ( corres­
ponding to the two possible values of A : A 1 and 

A2 ). 
For given A ( or correspondingly, l )1Eq. (40) 

permits one to find the ratio of C . to C. 
]'+ l ,,. 

Now we can go over to the solution of the equa-
tion for the radial function (15), which we write 
down in the form: 

where 
( 

<)2 2 iJ 28 c) -.-L---A+--- f(r)o-=0 dr 2 I T Or r r 2 ' 
(44) 

A = (m~c2 / h2 ) [1 - (1 + cf) I m0c2)2j (r£ == E- moc2). (45) 

(46) 

(47) 

B = (m0e2 ln2)(1 + cf) / m0c2), 

C = A. -- rx2 = (}' + 1 )2 + V (}' + 1 )2 -- rx2 -- rx2 = l' (!' + 1 ), l' > 0. 

The solution of such an equation is very well 
known ( see e.g. reference 13, pg. 438). 

In particular, in order to obtain the energy levels 
G, it is necessary to introduce the radial quantum 
number k according to the formula * 

B I VA = l' + k + 1 (4S) 

( We are interested only in the discrete spectrum). 
The radial quantum number can take the values 
k = 0, 1, 2, .... The energy levels are determined 
from the formula 

1 + i) I m0c2 = [1 + rx2 j (!' + k + 1)2]-'/, (49) 

= [1 + rx2 / (k + l/2 + Vl/4 + ), - rx2)2]-'i,. 

Expanding the right side of Eq. (49) into a power 
series in a 2 and limiting ourselves to terms of the 

order of a 4 , we shall have 

cf)/h= --~(I+~: C-:1,2 --- ~ )). (50) 

n = }. . 1 +-- _!_ + k R = ~~ == _<x2moc2 
I 2 ' 1mh 3 '2h · 

We have derived precisely the fine structure formula, 
which corresponds to that obtained upon sol uti on 
of Dirac's system of equations. 

* If we take the value of l' negative, then the series 
for the radial function diverges. 

13 A. A. Sokolov and D .. D. Ivanenko, Quantum Field 
Theory, GITTL, 1952 

Thus, both the relativistically invariant equation 
of Dirac and the relativistically invariant Eq. (8) 
introduced in the present work, similarly lead to 
the fine structure formula (50). The shift in the 
energy levels, which is corroborated by recently ob­
tained experimental data 14, is not predicted in either 
case. But the approach to this question from the view­
point of the validity of the(approximateJequation (8) must 
understandably be out of the ordinary. The ques­
tion about which of the relativistically invariant 
equations, Eq. (8) or the Dirac equation, better 
reveals the characteristics of phenomena in the 
micro-world, remains open. 

4. CONVERSION TO A SYSTEM OF DIFFERENTIAL 
EQUATIONS OF FIRST ORDER 

The relativistically invariant Eq. (8) which we 
used is a differential equation (more exactly, a 
system of equations) of second order. Dirac's 
equations, however, are first order differential 
equations. The natural question arises as to 
whether it is possible also to derive Eq. (8) from a 
system of first order differential equations which 
are themselves relativistically invariant. We shall 
show this is actually possible. 

Let us consider the system of first order differ­
ential equations which relate the components of the 
two real spinors J/tl) and t/1(2) : 

14 Collection of Papers:On Shift of the Levels of 
Atomic Electrons", IlL, 1950 



498 G. A. ZAITSEV 

moe h 
=T'r<z> 

• 
(~.A= A R, P = Rr; _i!_) 
. 13 • v iJx~ , 

~7~~(2\ + h: JA'f(2)= mt 'f(l)· 

(51) 

(52) 

These equations are relativistically invariant. In 
fact, sinee e/hc and m0 c/h are pseudoscalars, 
then as a result of the symmetry transformation 
characterized by the matrix-four dimensional 
vector A1 , the first equation goes over to 

-- A1 9 A!1A1'fo> 

-- (- ~c)J(-A1AA11)All]i(l> = (- mt)A1i><2>• 

whieh corresponds to Eq. (51). Consequently, Eq. 
(51) is invariant with respect to transformations of 
the Lorentz group. Analogously, we convince our­
selves of the relativistic invariance of Eq. (52). 

A characteristic feature of Eqs. (51) and (52), as 
well as of Eq. (8), is that they do not change upon 
substitution of 

(53) 

ftc of 
A"' by A"'-e a.x!'". 

The conversion of all the quantities according to 
Eq. (53) ean be considered as a gauge transforma­
tion. It is important only to note that the deter­
mination of the gauge transformation in accordance 
with Eq. (53) differs from the usual, in particular 
in that here f must be considered as an arbitrary 
function multiplied by a pseudoscalar, which ac­
cordingly changes sign under four-dimensional re­
flections. 

Let us multiply both sides of Eq. (51) from the 
left by the operator 'V + -Jt ] A. Using formula Eq. 
(31) of reference 8, we on~in 

[o2 + _!!_. JF + ..!!_JR"Rr;; A ~ 
v nc he 13 dx" 

2 2 + e JRr;;A R" o ( e )~A2l moe 
llC 13 iJx"' - \ he ~(1l = ~ 'f(l) 

or,considering that R"'A + AR"' = 2 o~ 2Aoc, we find 

[o-( ~efA~ 
+ _:_ J (F _L A"' __:!___ + _!!__ A")] ,,, = m~c2 

n.c ' ' ox" ax(/. 'r(l) h" ~(l)· 

Having assumed E = 1t] _§__ + ecp, P k = - M !x ot ox 
+~ A k , we shall have 

c 

(E' 2 2 "1 ' 2 2 4 ' - - c L..J P;, --moe + enclF) ·f<1 > = 0, (54) . 

" 
which agrees with Eq. (8). 

Analogously, multiplying Eq. (52) from the left 
by the operator 'V _.!:.._fA we obtain 

~ , ~5) 

[( a ' 2 ~ ( . a e )2 -- 1iJ- + e·r) -c2 11}- +-· A, 
at ax'' c ' k 

This equation differs from Eq. (8) only in that J is 
replaced by - ] , which corresponds to replacing i 
by -- i in Eq. (9), but this can not change the 
physical results, so that Eq. (55) is equivalent to 
Eq. (54). 

In this way, the relativistically invariant differ­
ential equation of second order which we studied, 
and which becomes directly a simple generaliza­
tion of Pauli's equation (5), is obtained as a 

result of the system of first order Eqs. (51) and 
(52). 

We note that for the consideration of discrete 
problems, another manner of writing Eqs. (51) and 
(52) may prove useful. Namely, we consider 

(56) 

We use the fact that, according to reference 1, 

- Bol;(l) ~ ( o_ 
1 e-ttl 

_ e-iu)' (~) 
0 ~2. 

(57) 

For definiteness, we can assume, as in reference 
1 (pg. 662) , that u + 11/2 = 0, since the parameter 
u can be chosen arbitrarily. Therefore, from Eqs. 
(51) and (52), using Eq. (57), we get 

(5tl) 
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In order to be able to study the system of equations 
(51), (52) in more detail, it is necessary to find out 

for which system of tensors the two real spinors 
lf( ) and if( ) are parameters, and how the primary 
te~sors are2 related among themselves. This ques­
tion will be considered in the following paper. 

Translated by R. L. Eisner 
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