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It is shown that the Onsager relations 
:n 

X;= h L11<Xk (i= 1, 2, ... ,n),L; 4 = Lki , 
k=! 

when limited to terms of second order in x , are first integrals of a more general set of 
differential equations 

ti2xi / dt2 =X; (i = 1, 2, .. , n). 

In the most general case, in which all terms in the expansion of D.S are kept, we obtain 
Lik = Lki with accuracy to terms of second order. The theory so developed is applied to 
the phenomenon of thermal conduction and to the theory of phases in adiabatically isolated 
systems. 

INTRODUCTION 

W E consider an adiabatically isolated system, 
whose state is completely determined by the 

variables ( 1 , ( 2 , ( 3 , ••• , (n. Let ~· (~, . 
• • , ( 0 be the values of these variables when the 

n 
system is in thermal equilibrium. Denoting by 
S ( (1' ( 2 , • • • , (n) the entropy of the system, 
we have 

. ' ~n) (1) 

S (,. 0 ,.0 ,. 0 ) 1 ( iJ2S .2 
C · c -- --x1 -- ~ ·to "2• ... ' .n - 2 dx2 

1 

n 

(i = 1,2, ... , n), 

where gik = gki' Xi = { - { 0 , and where the deriva­
tives are taken at x1 = X 2 = · · · = Xn = 0. 
Here "I.gikXiXk is a positive definite quadratic 
form. 

We now set ourselves the problem of determining 
the differential equations for irreversible thermo­
dynamic adiabatic processes. 

Lord Kelvin, studying thermoelectric phenomena, 
came to the conclusion that it was possible to write 
down differential equations which give the inter­
action between electric currents and thermal cur-

rents )( 1 , )( 2 in the form 

x1 = L11X 1 + L12X 2, x2 = L21X 1 + L22X2, 

where X 1 and X 2 are "forces" which depend on the 

electrical and thermal phenomena in the system. 
Later, Rayleigh, formulating a "principle of mini­
mum energy dissipation" pointed out the possi­
bility of considering ft. S as a potential function. 

Onsager, studying hypothetical unimolecular 
chemical processes in a substance which can exist 
in a given homogeneous phase in three forms A, B, 
C, which undergo spontaneous transition from one 
to another ("triangular processes"), and also 
phenomena of thermal conduction in anisotropic 
crystals, concluded that the tensor L 'k was sym­
metric. Following Holtzman's example and start­
ing from the assumptions of statistical mechanics 
on the "microscopic reversibility" of elementary 
processes and from the theory of fluctuation, 
On sager 1 established the phenomenological rela­
tions 

II 

X;=L;Ln,X, (i=1,2, .... ,n), (2) 
h=l 

where Lik = Lki' Xi is the flow of Xi• Xk are the 
"forces", which are partial derivatives of the 
potential function (-D. S} with respect to the Xk• 

i.e., 

1L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 
(1931) 
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(3) 

Later Casimir 2 pointed out gaps in Onsager's 
argument, showing that Onsager assumed that. the 
fluctuations on the average follow the usual phe­
nomenological macroscopic laws. Landau and 
Lifshitz 3 proved that Lik must be coefficients of 

essentially positive quadratic form. However, as 
we have shown 4, this is still not sufficient to 
establish the On sager relation. De Groot 5 sug­
gested that the On sager relations (in those cases 
where only their applications are concerned) be 
taken as a new thermodynamic principle. 

We consider below the problem of irreversible 
thermodynamic processes from the mathematical 
point of view and obtain several consequences from 

the second law of thermodynamics in conjunction 
with irreversible processes in adiabatically iso­
lated systems. Following established custom, we 
keep only quadratic terms in the expansion of !iS 
in powers of x 1 • x 2 •..• , Xn· Then, following 
the method of integration developed by Poincare', 
we show that consideration of all terms in the ex­
pansion of 1'1 S does not lead to any essential 
changes in the results. 

l. ANALYSIS OF THE PHENOMENOLOGICAL 
RELATIONS OF ONSAGER 

First of all, we note that for each set of initial 
1 0 0 0. . • va ues x 1 , x2 , ... , Xn It Is necessary, m 

adiabatically isolated systems, that limx; (t) 

= 0 fort .... + oo. Thus the point x 1 = X 2 = . . . 

=X = 0 is a critical point of the integral of the 
n 

system of differential equations 

dx; I dt = L;IXJ __)_ L;~ x~ 1- + L;I!Xn 

( i = 1, 2, 3, ... , n ), ( 4) 

where Lik = Lki Since 

2 
H. B. C. Casimir, Rev. Mod. Phys. 17, 343 (1945); 

Philips Res. Rep. 1, 185 (1946) 

3 L. Landau and E. Lifshitz, Statistical Physics, 1951 

4 Kyrille Popoff, Compt. rend. 238, 648 ( 1952); J. de 

Math. Phys. Appl. 3, 42, 440 (1952); 5, 67 (1954); Compt. 

rend. 236, 785, 1640 (1953); Ann. Phys. 9, 261 (1954) 

5 S. R. de Groot, Thermodynamics of Irreversible 

Processes (North Holland Publ. Co., Amsterdam, 1951) 

the integral of the system of linear differential 
equations of nth order 4 possesses n constants of 

integration. This characteristic permits us to make 
an arbitrary choice of the initial values X~· x2°, 

, X~ of the independent variables Xl' x 2 • 

. . . , Xn. However, this is not sufficient to 

guarantee that the integrals of the given system 
have physical significance. It is also necessary 
that lim Xi (t) = 0 for t-> + oo or, in other words, 

that the point XI= x 2 = ... = Xn = 0 be a com­
mon point of the family of integral curves, i.e., that 
all the integral curves which satisfy the arbitrary 

t f .. "al d" . 0 0 0 f se o Imti con Itlons x 1 , x 2 , .•• , Xn o 
the independent variables meet at this point. In 
order that the integrals 

(5) 

(i= 1,2, ... , n) 

of this system satisfy the condition lim x. (t) = 0 
• 

for t .... + oo, it is necessary that all ri be negative. 
But, since the ri are functions of the Lik' which 
thus determine the state of the system, this re­
quirement contradicts the basic hypothesis that 

.;I' .;2 , · . · , .;n are the only variables that 
define the state of the system. 

As an example. for n = 2. we have 
dxi I dt (6) 

dx2 / dt 

S . rt {3 rt h d t" ettmg XI= ae , x 2 = e , we get t e qua ra tc 
equation 

I Lugu + L12g21 -- r 
I L21g11 -i- Lz~P:~I 

(7) 

for determining r. The roots of this equation are 



338 KIRIL POPOV 

In order that the differential equations have 
physical meaning , r 1, r 2 must be negative, i.e., 

O< (/ .. ugu + 2Lt?.gt2 + L22g22)2 {9) 

We now show that the set of differential equations 

d2x; J dt"!. ==X; (i = 1,2, ... , n), (10) 

satisfies the physical requirements and has the 
phenomenological relations (2) as first integrals. 

We rewrite the set (10) in the form 

d 2x1 I dt 2 = gux1 + g12X2 + · · · + ginxn, (10') 
• • • 0 • • • • • • 0 0 • • • • • • • .. • • , 

d 2X 11 I df2 = gn1X1 + g,,2X2 + · · · + gnnXn. 

Setting 

we obtain 

g,nr!. + gn2~ + gn3"l + ... + (gnn- r 2 )'1 = 0. 

In order that this homogeneous system of alge­
braic equations in a, {3, • • . , v possess near 
zero solutions we must have 

gu- r2 gt2 
g21 g22- r2 

g nt g n2 • • . g nn - r2 

Since l:gtlcXtXk is a positive definite quadratic 
form, all the roots of the equation of nth degree in 

~(r2) = 0 

are real and positive. Thus n roots ( r 1 • r 2,. 

r n) of this system are negative and n roots 

(rn+1 =-rl' 'n+2=-r2' · · ''n+p =-rp, 

· · · • '2n = -rn) are positive. 
In the set of equations (11) it is always possible 

to set a= 1. Since r appears only as a squared term, the roots 
T& and rn +i = -r, correspond to one and the same 
set of values a. = l, {:).., y., . . . , v.. Then the ' ,..., ' ' 

general integral of the set of differential equations 
has the form 

xt (t) = Cter,t + C2er,t-!-- ... + Cnernt 

+ Cn-;-Iern T-1' + ... + C2ner2nt' 

x2 (t)= Ctpter,t + C2p2er,t + · · · + Cn~ner"t 
+ C o rn·'-1'+ -l-C o. r.,nt n+tr'n+te · · · · , 2nt12ne - , 

+ Cn+t'~n+lern+!t + · · · + C2n'l2ner2111 , 

where r, a, {3, • • , v depend only on the gik 

For lim xJt) = 0, we must have 
t-+ +"" 

Cn+l = Cn+2 = · · · = C~" = 0. 
Then we obtain . 

X1 (t) == C 1er,t + C 2er,t + · · · + Cner"', 

x2(t) = C1~1er,t + C2p2er,t + · · · + C/:t"er'l, 

(t) C r1t _j_ C r,t 1 _j_ C r11t 
Xn · = 1'~1e , 2'~2e 1 · · · : n'lnC 

(I 2) 

In determining e 1, e 2•. • • . • en, we obtain the 
relations for t = U: 

X~ = cl + c2 + ... + Cn, 

X~= Clvl + C2'12 + ... + cll'ln, 

h 0 0 0 h b' 'l were x1 • x2 •••• , Xn are tear ttrart y 
chosen initial values of x1• )( 2 , ••• , Xn· 

Substituting x1 (t), x2 (t}, . . . , Xn (t) from 
Eq. (12) in the expressions (10) for X 1• X 2• · • •• 

X , we get 
n r 'A + C rntA .'(1 = Cte ' t +. . . ,e "' ( 13) 

•••••••••••• 0 ••••• ' 

Here A, B, . . . , N are functions of gik only and 

do not depEmd on e1. e2 .... ·,en. Further, we 

have 
' (t) C r,t + C r,t X; = t"''hrle 27i2r2e ( 14} 

+ · · · + Cnr,nrner"t (i = l, 2, ... , n). 

Eliminating e 1erle, e2er2t, •.. , enernt from 

Eqs.(l3) and (14), we get 
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i.e., 

X; 'fjlrl 
xl Al 

Xz Bl 

A2 ..... ~! 
= \) 

B2 ••• B" . ' 

l\'2 · . ·. : ~v;l / 
x: = L;1X1 + L;2X2 + · · · + L;"Xn 

(i = 1, 2, ... , n). 

( 15) 

Thus the phenomenological relations are first 
integrals of the system (10). Here the Lik are 
constant quantities, determined by the coefficients 

gik alone. 
For n = 2, when 

x1 = gllx1 + gl2x2, )(2 = g2lxl + g22x2, 

we have 

d2 X1 / dt 2 = g nX1 + guXz, 

Setting 

we obtain 

d2xzf dtz = g2lxl + g22x2. 

g n - r2 + g 12? = 0, 
gz1 + (gzz- r 2 ) ~ = 0. 

(16) 

( 17) 

The determinant of the coefficients now has the 

Setting C 3 = C 4 = 0 , we have 

X 1 = C1e'/ -1- C2e'•1, X 2 = C1p1e'•1 + C2?2e'•1, 

where /3 1 and f3 2 correspond to the roots r and 
r 2 and are determined by Eq. (17) 1 

Making use of the above values of x 1• x2 • and 
keeping in mind Eq. (17) we obtain 

\' = C e'"r2 + C e'J -2 
- 1 1 1 2 I 2, 

form 

~(r2)=1gn_-r2 . glz ~1=0 
g2I g22- r· 

and, consequently, 

2 gu + g22 (18) 
r1,2 = 2 

Since !.gikXiXk( i = l, 2) is a positive definite 
quadratic form, we have 

gll > 0, g22 > 0, gllg22- gi2 > 0 

and consequently 

( gu + g22 ) 2 _ (a a _ a2 ) < ( gu + g22 ). 2 
2 ..., lib 22 0 12 2 . 

On the other hand, 

( gu + g22)2 __ (g. 0. _ g2) 
2 . llb 22 12 

_ ( gu - g22 ) 2 + g2 > 0 
- 2 12 ' 

so that 

ri > 0, r~ '> 0. 

Consequently, all the roots of the equation ~( r 2) 

= 0 are real and 

Eliminating C 1 e' 1 t and C 2e' 2t from these four 

equations we get 

x; = L 11 .'<1 + L 1 '!..Y2 , x~ = L 21 X 1 + L 22X 2 , 

where 
L _ _ rz- r1 L _ (31(32 (r2- r1) 

12 - r1r2 ((32- (31) ' 21 - r1r2 ((32- f3t) • 

From Eq. (17) we have 

Consequently, 
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However, keeping (18) in mind, we get 

As a consequence, 

?~?~ =- 1' 

l12 = L21· 

We now consider a numerical example for n = 3, 
setting 

gil - 5, o· 
b 12 - 1 ' g13 = 3 

' 
o· 
""":!1 - 1' o· 

b~:.'! - 4, g23 - 2, 

o· 
::-.:11 - 3, ,g32 - 2, g33 = 6. 

The corresponding quadratic form is positive 
definite, since 

o. g:l3 > o. I g_·ll g121 > o. 
g21 g·22 

,_, 11 ,_, 13 I 0 - u I 
I g31 g33 

o, \gzzgz3j>o. 
~-32 g33 

g21 g22 g23 > 0. 
g31 g32 g33 

The roots of the algebraic equation 

,, 
g22- r-- g23 ::::=: 0, 

g32 gaa- r 2 1 

are 

r~ = ~l.418~l, r~ = 2.1 \)44, r; = 3.3868, 

as can be easily verified, so that 

r1 =- V8.4:l8~, r~ 

Setting a 1 == a2 == a 3 = 1, we get 

Ig ?1 = f.8118o; lg '"fl = 0.00931; 

I g ;32 = 1. 981 56; lgh = 0.07oo4n; 

lg p3 = 0.14868 n; lg Ta = :2.8:2822 n; 

rir~r; '" /,.2r2r2 
1 2 ;j ~ • 

L23 =- --~- 0.51o; L32 = ----~--O.o20, 

where 

r~ 2 r3 
~= 2 '.) 

,2 ~2 r; Pa 
., 

r212 
2 ra ';a 

THE SYMMETRY OF THE TERMS Lik 

ITERATION METHOD. 

The terms L ik in the integrals of the system of 
differential equations that we have just considered 

are symmetric under less restrictive conditions than 
those given above. This fact makes it possible to 
explain the results obtained by several investigators 
who started out from the phenomenological relations 
of Onsager, in which it was not required that 

lim x.(t) = o. 
' t-++oo 

Pierre Curie 6 , taking as his point of observation 
the symmetry in the structure of crystals, had al­
ready come to the conclusion that "when certain 
causes produce a given effect, then elements of 
symmetry in the cause also appear in the effect 
produced by these causes", and that "when certain 
effects display a known asymmetry, then one must 
find a similar asymmetry in the causes which pro­
duce these effects". 

In the case in point the symmetry of the matrix 
gik requires the symmetry of the matrix Lik' 

Considering the system (18), we have established 
the existence of a set of integrals which satisfies 
the conditions lim xi (t) = 0, lim x: (t) = 0 for 
t == + oo, This is sufficient to establish the phe­
nomenological relations and the symmetry of the 
matrix Lik' independent of algebraic considerations. 

For simplicity we consider the system 

d 2.x / dt 2 =ax:+ by (JP) 

=X, d 2y I dt 2 = b.x cy == Y, 

where a, b, c are arbitrary constants. We find the 
integrals of this system, which satisfy the condi-

6 P. Curie, J. Phys. , 393 (1894) 
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· tions t = 0, X'= 0, y '= 0. 
The method of iteration which we have followed 

is general: we apply it for each n. 
Integrating both sides of the first of these equa­

tions from 0 to t, and setting X '(0) = 0, y '(0) = 0, 
we get 

t t 

x' (t) = ~ Xdi =Xi-~ iXdi 
0 0 

t 

= Xt - 7:2 Xt 2 + 7:2 J t 2 Xdt. 

But 

.R = ax + by= a.Y + bY, 
(20) 

so that 
t 

x' (i) =Xi-~~ .Y + ~! ~(aX+ bY) dt 3 

0 

t2 • t" . 
=Xi - 21 X +3r (a.Y -r- bY) 

t 
1 l" • • 

- --;rr-) (aX+ bY) t3dt 
0 

t~ • [3 

= Xt-2TX +3T (aX+ bY) 

t 
t' • • 1 c .. .. 

-4! (aX+ b'f} + "4T )t4 (aX+ bY) dt. 
0 .. .. 

Substituting the values of X and Y from Eq. (20) 
in the last integral and integrating by part.s we _get, 
after some simplification (recalling that X= ax 

+ by' y = bx + cy ), 
( 1 -+- _!!__ t2 _,_ a2 + b2 i4)\ d.x 
\ . 2! . /1! dt 

( a i3 -1- a2 +.5! b2 t") X = t+-;;r ' .;, 
(21a) 

It is necessary to extend the iteration process to 

infinity. 
In the same fashion we get from the second equa-

t t 

- b(a +c) ft5 Xdt- b2 + c2 [ t5 Ydt. 
5! 5! J 

0 0 
INVESTIGATION OF THE CONVERGENCE 

OF THE SERIES 

To establish the convergence of the series we 

consider the dominating system of differential equa­
tions 

d2xjdt2 = p(x +- y) =X, (A) 

d2y j dt 2 = p (x + y) = Y, 

where p is the largest of the numbers I a I, I b I, 
I c I· 

Proceeding with the system (A) as we did for the 
system (19) we get 

( 1 + }!__ i2-L- 2p2 i4 J_ l:._2p3 i6 
2! · 4! ' o! 

2n-lpn i2n) d.x 
+···+~~-(2n)! dt 

( 2 2 22 3 ?n-1 n , d + _!!__ t2 + _!!_ t4 + __L t6 1 ••• + -:___!!_ t2n) -.y 
2! 11! o! T (2n)! dt 

(22) 

2n-2 ) ... + pn-1 t2n-1 X 
(2n- 1)! 

+(Lt3+ 2P2 i5+ ... + 2n-2 pn-1t2n-1) y 
3! 5! (2n -1)! 

t 

+ 2n-1 P" (" t2n (X+ Y) dt. 
(2n)! j 

0 

Here for each finite value of t 

t 
2n+tprz ~ 

lim -(2 )' t2n (X+ Y) dt = 0. 
n~ro 1l · 

0 

Since the relation of the ( n + 1) st to the 
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nth term in each series tends to zero as l/n, 
then the series which occur in the coefficients of 
our equations quickly converge for each value oft; 

consequently, the coefficients in Eqs. (21) also 
converge. We write these formulas in the form 

A dx + B ~)!___ 
dt dt 

(23) 

dx . dy . 
= ocX + ~ Y, B lit + C lit = ~X+ 1 Y, 

where 

A I a '2 + a2 + ~2 t4 + = + 2! l --4!- ... ' 

a a2 + b2 
Ot = t + -3, t3 + ---, - t" + ... ' 

. i). 

B = !!_ t2 + b (a+ c) t4 + ... 
21 ..l I ' . ~-

(24) 

0 _ _!!_ t 3 + b (a+ c) t5 + ... , 
p- 3! 5! 

C = I + .!:.._ f2 + b2 + c2 t4 + ... 
2! 4! ' 

c b2 + c2 ..,. = t + - t 3 + -- t5 + ... 
I 3! 5! 

Here 

AC--B2 = I +a +ct2_j_ ... ±Q 
2! I I 

and, consequently, 

dx / dt =LuX+ L 12 Y, (25) 

dy I dt = L21X + L22 Y, 

where 

L Ca + B!3 C{3- By 
u = AC - Bi' L12 = AC - J32' (26) 

L Af3- Ba L Ay- B!3 
21 = AC- B2' 22 = AC - B2· 

Simple calculations show that 

C~ -Br = Ap -Boc (27) 
and thus 

We have seen that X = 0, y = 0 is a critical 
point of the system of differential equations and 
that all integral curves which correspond to a 

certain physical problem pass through this point. 
If we take the moment of thermodynamic equilib­

rium at t 0 = 0, then t .< 0 will correspond to thermo­

dynamic processes. For t I .< t 2 .< 0, we have 

x' (t 2) == Lu (i2) X (t2) + L 12 (t2) Y (t2), 

y' (t2) = L21 (t2 ) X (i2) (28) 

+L22 (f2) Y(t2), L12 =L21' 

where t 2 = t I + T. If we assume that t I is known, 
and set t 2 = t I + T, where the positive quantity T 

runs from Oto - t I' all the quantities appearing in 
Eq. (28) will he functions of T, so that we can 
write 

x' (') = L11 ('t) X(')+ L12 (') Y (,), 

y' (-:) = L21 (')X(-:)+ L22 (-:) Y ('t), 

L12 (-r) = L 21 (-.:). 

If f is any of these quantities, we can write 

For convenience we write {( T) in place of 
{( t I + T) . Thus we have again obtained the 
phenomenological relations of Onsager and 
L = L ,, I" The application of the general method 

I2 ~ 

of iteration which we have used does not present 
any difficulties for n > 2, so that in the general 

case, Lik = Lki" Here, however, it is not- evident 

that the coefficients Lik are independent ofT, as 
was shown in Eq. (15). 

2. ANALYSIS OF THE GENERAL CASE IN WHICH 
!'iS CONTAINS ALL THE TERMS OF THE 

EXP Al'lSION IN POWERS OF THE VARIABLES 

We now examine the most general case. Keep­
ing all the terms in the expansion of !'!. S in powers 

of XI' x2 • ••• , Xn• we have 

(2.1) 

The dots here indicate terms of third and higher 
order in the variables X· The corresponding system 
of differential equations has the form 



IRRE VER SIBLE THERMODYNAMICAL PROCESSES 343 

(2.2) 

with the dots indicating terms of second and higher 
order. Setting g = dx/dt, we rewrite this system of 
2n th order in the form 

dx1 dx2 
~1 = ~2 = ... (2.3) 

dx11 d~1 

= ~ = gllxl + · · ·+ glnxn+· · · =. · · 

d~n 
... = -=g:--nl:--x:-1--:+-.-.-.-=+~g:....n_n_X_n+-.-.-. =di. 

With the help of a linear transformation we can re­
write this system in the form 

du1 du2 
(2 .4) 

du 11 
-----

r"u" + ... 
duzn 

----=dt, 
r2nu'21l + ... 

with the dots again indicating the terms of second 
and higher order in ui. The values r1 , r~, ... , 

'n• 'n + l' · · · , r 211 are the roots of the al­
gebraic equation of 2 n th degree previous! y con­
sidered: 

gll- rf g12 · · · gin / ........ ·I= 0. 
gnt ~-":?. · • • g·nn ~ rz. 

As we have already seen, n roots ( r 1 • r 2 • 

r11 ) of this equation are negative, and n roots 
(r11 + 1• r11 + 2 ' ... , r 211 ) are positive. 

(2.5) 

Poincare' 7 showed that such a system of dif­

ferential equations possesses a system of holo­
morphic integrals of e'lt, e'2t, ... , e'n t 

(2.6) 

(i = I, 2, ... , 2n), 

(:2./) 

(i= 1, 2, ... ' 11), 

where cui = d 1/J/ dt and 1/Ji and cui are holomorphic 

functions of e'1t, e'2t, .•• , e'n t which ap­
proach zero as t -+ + oo and which possess no 
constants of integration, thus allowing the choice 
of arbitrary initial values X 0 X 0 X 0 

1' 2' · · ' n· 
All the necessary conditions for this rule are 

satisfied in this case. 
For simplicity we consider the case for n = 2. 

Setting X1 =X· X2 = y, gll =a, g21 = g12 = b, 

g 22 = c, and recalling that F;Y = F;" we get 

d 2 x I d t2 = ax + by + e x 2 

+2fxy+gf+ ... =X. 

d2y I dt 2 = bx + cy + jx2 

+ 2gxy + hy2 +· .. = Y. 

(2.8) 

Since a X 2 + 2 b XY + cy 2 is a positive definite 
quadratic form, 

a> 0, c :,. 0, ac -- b2 ·/, 0. • 

Corresponding to this system we have the 
system 

and the equivalent differential equation in partial 
derivatives 

iJF ::: + iJF X+ iJF II + dF y = 0. 
dx d'; dy iJ·r, 

( ? (') - •• 1 

The linear substitution 

(2.10) 

which approach zero as t-+ + oo and which possess Z = au; + IX42X + CY.437l + oc.uY 
n constants of integration. Consequently these 
correspond to this set of integrals of the form yields the system 

7 H. Poincare: Sur les proprie'te's des functions 
I 

definies par les equations aux differences particlles, 

These de doctorat, Paris, 1879 

iJF iJF iJF iJF iJF 
0~ = ~!Xu+ iJV OC2l +OW 1Xal + (iZ IX.w 

iJF iJF I iJF I iJF iJF 
d.x = du IX12 T (iV IX22 T OW IX32 + (fZ IX42• 
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iJF - iJF I iJF iJF iJF 
(h) - du CX13: (iV cx2s + dw cxa3 + dz. cx43' 

iJF iJF iJF iJF iJF 
dy = du CX14 + dV CX24 + OW (X34 + 7ft CX44' 

and the equation 

dF ( X -~ 
du CXn + cxl2.::. + cx13 y + cxl4H) + 

+ ~: (cx21X + CX22 3 + cx23 Y + cx24H) + 

+ ~~ (:xa1X + CXa23 + CXaa Y + OC34H) + 
(2.11) 

We choose aik so that, after some reduction, we 
get 

F iJF 
d- (r1U1 + · · ·) + ·--~- (r,v + ... ) 12.12) U uV " \ 

where the dots indicate terms of higher order of 
smallness; in this case we must have 

(2.13) 

oc4'1X 1 + cx42 3 + cx43 Y1 + cx44 H = r4z 

= r4 (ocu~ + OC42X + CX4a'Yl + cx44y), 

where X 1 and Y 1 are the quantities X and Y in which 
only terms of first order are kept. We the.n ob-
tain 

cx; 1a- oc;2r; + oc;3b -+- cx; 40 = 0, 

- CX;1Y; + CX;zl + CX; 30 + cx; 40 = 0, 

OC;1b + CX; 20 -j- CX;aC- OC; 4r; = 0, 

oc;tO + oc;20- oc;:Jr; + oc;41 = 0. 

(2.14) 

For the homogeneous system in aik to have non­
zero solutions, we require 

(2.15) 

I a - ri b 0 
1-r· 0 0 ~a-r~ b I I b, = l ~ = 0. 

0 c -r; b c-rT 
I 0 0 -r; 1 I 

We saw in Eq. (18) that the roots of this equa­
tion of fourth degree are real, whereupon 

r / ----o 
1 '----- r2 "- • r3 =- r1, r4 ='- r2. (2.16) 

To these roots there correspond the coefficients 
aik which, after we set ai 1 = l, have the values 

cx;2 = r; = ~;. (2.17) 

2 
oc;x = (r;- a)/ b = oci, oc;4 = r;a.; = ·;;. 

As we have already pointed out, the integrals of 
Eq. (2.11), which approach zero at t--> + oo, are 
holomorphic functions of k 1 er 1 t and k 2er 2 t, where 

the constants k 1 and k 2 are sufficiently small. 
These integrals can be expanded in a series in 
powers of k 1er1t and k 2er2t. The convergence of 

these series as t--> oo was investigated by Poin­
care' 7 and later by Pi card 8 • 

We return to a consideration of Eq. (2.9) and the 
substitutions (2.10). Since the determinant of the 
coefficients x. y, ~. 7J in (2.10) differs from zero: 

r1 (/,1 

r2 <Xz 

ra oca 

"[ 1 

"[ 2 

Ta 

(2.18) 

= - 4r1r2 (1Z1 -- 1Y.J 2 =!= 0, 

r4 oc4 ,. 
14 

the substitutions (2.10) determine X• y, ~. Tf as 
linear functions of u, v, w, z. All these 
quantities approach zero together. Consequently 

the integrals of X• y, ~=X', 7J = y' which go to 
zero for t = + oo can be represented by a series of 
powers of er1t, er2t which converge fort=+ oo. 

We then have 

(2.19) 

-+- 0 k k e'r,+r,) t + 0 k2 2r,t ' 
• -t12 s~e --r-· .. , 

8 E. Picard, Traite' d' Analyse, Paris, 1908 
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-+, C k k ( , " )2 (r,+r,)l , C k24 2 2r,t 
.- 4 1 2 r1 --r- r2 e - -t- s 2 r2e · + · · ·, 

and a similar expression for y "(t), where the 
coefficients G replace the coefficients C. 

The values of these coefficients can be found 
by the method of undetermined coefficients, sub­
stituting in X and Y the expressions for X and y 
given above. 

In this way we obtain 
(2.20) 

X= ax+ by+ ex2 + 2/ xy + gf + · · · 
= k1 (aCl + b01) e'"•1 + k2 (aC2 + b02 ) er,t 

+ kT (aC3 + b08 + eCi + 2JC10 1 +gOT) e2''1 

+ k 1k'J laC4 + b04 -t2eC1Ca 

+ 2/ (C10 2 + C20 1) + 2g010 2] e<r,+r,> t 

+ k~ (aC5 + b03 -+ ed 
-"- 'JfC 0 , -O~) 2r,t , .... ..., " -, o ·) e ~ _...,. ........ 

- .,. I (..., """" ~ ' 

Y = k1 (bC1 + c01) e'•1 + k2 (bC2 + c02 ) e'•1 

+ ki (bC3 + c 0 3 + JCi + 2gC10 1 +hOi) ezr,t 

+ k1k 2 [bC4 + c01 -t 2/CIC'J 

+ 2g (C10 2 + C20 1) + 2h010 2] e<r,+r,)t 

+ k~ (bC5 + c0 5 

+ JCi + 2gClJ z + hO~) ezr,t + ... 
Equating coefficients for corresponding powers 

of er 1 t and er 2 t in the expressions for X and 
d2X/dt 2 and also in the expressions for Y and 
d 2'i/dy 2 , we first obtain 

C 1 ( ri - a) - bO 1 = 0, 

- bC1 + (rf- c) 0 1 = 0, 

c2 (r~- a)-- b02 = 0, 

- bC'J + (r~- c) 0 2 = 0. 

(2.21) 

The first two of these equations give two values 
for G 1: 

r?. --a (' c I Jl= ~~b~ 0 ~ = cl -_,-b-, (2.22) 
r1- c 

which are equal to ea"ch other, since 
( r i - a) ( r i - c) = b 2 • In other words, 

(ri- a)/b= 1)(1 , 

and, consequently, G 1 = C 1a 1. In the same way, 
we obtain 

from the last pair of the equations (2.21). 
Comparison of the coefficients of e 2r 1t, 

e( r 1 + r 2) t, e 2r 2 t leads to the following equa-

tions for the determination of Ci, Gi: (2.23) 

C3 (4ri -a)- O:lb = eCi + 2JC10 1 +gO£, , 

-Cab+ Oa (4r~- c)= JCi + 2gC10 1 + hO~, 
C I (rl + r 2)2- a!- 0 4b 

= 2e_c1c2 -+- 2/ (C102 + cpl) + 2gOI02, 

-C4b + l(rl + r2)2-c!04 

C5 (4r~- a)- 0 5b = ec; + 2JCz02 +gO~, 

- C3b + Os ( 4r! --c)= JC~ + 2gC20 2 + hO~. 
The convergence of the series thus obtained is 

given by the method of Poincare' 7 • The treat­
ment is also set forth in Picard's work 8 • 

THE PHENOMENOLOGICAL RELATIONS IN THE 
GENERAL CASE 

In order to show that the phenomenological 
relations follow from the equations 

d 2x _ . _ a(- ~S) d 2y _ y _ a(- .lS) (2.8") 
dt2 - )( - dx ' dt2 - - ay ' 

even in the general case, we rewrite Eqs. (2.19), 
keeping terms up to second order in k 1 and k 2 : 

( 
' 1 ' \(2.24) 

X= e'/klCl I + C3kle'•1 + -y C4k2er,t) 

( l " " ) + e'•1k2C2 \1 + ~ C4k 1e'.t + C5 k 2e'•1;' 

Y = e'•1k101 (I + O~k1e'•1 + ~ O~k2 e'· 1) · 

+ e'JkPz (I + + O~k 1e'• 1 + O~k2 e'· 1 } 
where 

' c. 
Ci= -r.', 

·I 
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we can write 
(2.26) 

x = e'•1k1C1 (1 + 1.) + e'•tk2C2 (l + p.), 

where,\, p.. p, TT, .\ 1 , p.1 , p 1 , TT 1 contain k 1 and k 2 

as factors of first power. 
Substituting the values of erlt, er2t from (2.26) 

in (2.27) we obtain 

x'o=x[rlcx2 (1 +;:)(1 +1.1) 

-- r 2cxt{1 + p)(1 + P.I)] 

(2.28) 

+y[r2 (1 +1.)(1 +f1I)-rd1 +p-)(1 +)·I)], 

y'o = x [rlcxicx2 (1 + '-) (l +PI) 

- r 2cx1oc2 (1 + p) (1 + ;:1)] 

+ y [r2oc2 (1 /.) (l + ;:1)- rioci (I + fl) (1 + pt)], 

where 

0 = (1 + ).) (1 + ;:)cx2 - (1 + ft) (1 + f') :;c1· (2.2~)) 

We obtain the phenomenological relation 
directly from (2.28), substituting X and Y for X and 
y. 

Since 

X=xL+yM, Y=xM+yN, 

where 

L =a+ ex+ fy, M = b + fx + gy, 

N=c+gx+hy, 
we get 

(2.30) 

x6. = XN -- YM, y6. =- XM + YL; (2.31) 

here 6. = LN -M2 

For these values of X and y we can rewrite the 
relations (2.28) in the form 

x'o6. =X {N [ricxz (1 + ;:) (1 + 1.1 ) (2.32) 

- r :!oc 1 ( 1 + p) ( 1 + 111)] 

-M[r2 (1 +1-) (l +f1I)-rdl +P.) (1 +1-I)j} 

+ Y{L[r2 (l +I.) (1 +f11)-r1 (1 +:1) (1 +i-1)] 

- M [rioc:~ (1 + ;:) (l + /. 1)- r~oc1 (l + f') 
(1 + :1 1)]} =AX BY: 

y'o6. :=X {N[riiXIcx2 (1 + ;:) (1 + P1) 

-r2cx1cx2 (1 +r)(1 +;:1)] 

- r 1cx1 ( 1 -+- f1) ( 1 + P1)]} 

+ Y{L[r2cx2 (1 +1.)(1 +7t1) 

- r 1cx1 (1 + fl) (1 +PI)] 

-M[ricx1cx2 (1 +;:)(1 +f-'1) 

- r2cxicx2 (1 + fJ) (1 +;:I)]}= DX + C Y. 

We now show that for the general case which we 
have considered, we have an almost symmetric 
tensor Lik' i.e., that D and B differ only by terms 
which contain k 1eTJ '. k 2er 2 1( i.e., by terms which 
go to zero as t-+ + oo ) Actually, by keeping in the 
expressions forB and D only those terms which do 
not contain k 1 and k 2 explicitly, we would have 

L =a, M = b, N = c 

and consequently, recalling the values of a 1, a 2 , 

B =a (r2 - ri)- b (r1cx2 - r 2cx1) =a (r2 - r1) (2.33) 

- [ri (r~- a)- r 2 (ri-a)]= r 1r 2 (r1 - r 2) 

and 

D = c (r1oc1cx2 - r 2cx1cx2)- b (r,_cx2 - r1cx1 ). (2.34) 

But ca = a r 21 - b ca = a r 2 - b so that 
1 1 '2 22 ' 

D = cxlcx2 (r2- r1) '1'2· 

On the other hand 

(ri-a)(r~-a) 

and consequently 

D = r1r2 (r1- r2) = B, (2.35) 

i.e., L 12 = L 21 with accuracy to terms which con­
tain k 1 and k 2 as first powers which tend to zero 
with increasing t. 

GENERAL PROPERTIES OF THE INTEGRALS OF 
THE SYSTEM OF EQUATIONS (2.2) 

We consider the system 

d2x; _ a(-- ~S) _ y. 
dt 2 - dx; -- ..- ' (i =I, 2, ... , n),(2.2') 
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where !:!Sis taken in its most general form. Since 

o (- flS) = ""'· iJ (-AS) ~ '--..X ~ 2J iJx. tJXi = L.J i'JXb 
i l i 

we have 

(2.36) 

On the other hand, we get from (2.2') and (2.36) 

~x; ~;: = ~ d~ ~(x)'= 'Y,Xix;= ~ (-l:!S); 
i i i 

consequently, 

x~· +x; . . -++ x~ AS t 
2 + u = cons . 

In irreversible thermodynamic processes 
lim x( (t) = 0 and lim X& (t) = 0 fort-++ oo and, 
consequently, in these processes 

(2.37) 

1/z (x; + x; .+ ... + x~) + !lS = 0. (2.38) 

ADDITIONAL REMARKS 

We pose the following problem: beginning with 
!:!S, can we obtain a much simpler set of differ­
ential equations whose integrals approach zero at 
t = + co and which have n constants of integration, 
making it possible to choose arbitrarily the initial 

values X~, X~· . . . , X~ of the independent 
variables? 

We consider the linear system of nth order 

(2.39) 

+ .. ·+ ginXn) (i = l, 2, ... , n), 

(which is a partial case of the phenomenological 
relations of Onsager ), in which L "k = 0 for 

L k d s . ' -At i =r=- an L . . = - l. ettmg X 1 = ae , 
" P. -N. -At x 2 = ,..e , . . . , Xn = ve , we get a 

system of homogeneous algebraic equations for 
X· (2.40) 
(gu- 1.) IX+ g12~ + g1ai +···+gin'~= 0; 

. . . . - . . . . . . . . . . . . . . . . . . . ' 
gn1IX + gn2~ + gn3i + ... + (gnn- l.)v = 0. 

For non-vanishing solutions of this system we 
must choose for X the roots of the algebraic equa­
tion 

g12 gu · · · gln 

g22-A g2a · · · g2n 

which we already know. 

(2.41) 

=0. 

As we have seen, all n roots of this equation are 
real and positive. It is evident from (2.40) that there 

corresponds to each root A. a set of solutions 
' ai = 1, f3i' Yi• · . . , vi such that the general 

integral of the system (2.39) has the form: 

(2.42) 

XI= Clocle-"A,t + C2oc2e-"A,t + ... + Cnocne-"J,.nt' 

Xz = cl~le-"A,t + c2~2e-"A,t + ... + Cn~ne-"J,.nf, 
......................... 

These tend to zero as t -+ + co. The values of C 
1' c 2' c 3' . • . ' en are determined by the system 

X~= C1oc1 + C2oc2 + ... + Cnocn, 

xg = C1~1 + C2~2 + ... + Cn~n, 

If we compare the set of integt:als (2.42) with 
the set (12) we see that ri = - V \ and that 
both ai, f3i, Y&· ... , vi and C1 , C2 , C3, . 

C have identical values in the two systems. 
11We now assume that 

Since I Ti I = + vX: we get 

Consequently we can write the integrals of the 
system (12) in the form: 

Xi = C1'1l1e'•t [t + CC21J~ e<r,-r,)t + .... 
llJl 

+ ccnlJn e<rn-r,>t] (i= I, 2, ... , n), 
llJl 

and the integrals of the system (2.42) in the form 

Xi =C1'1l1e-"A,t[t + cc21Ja e-<"A,-"A,)t + ... 
llJl 

+ C!'1Jn e-<"An-"A,) ]. 
L11J1 



348 KIRIL POPOV 

But since ri - r 1 < 0 and - ( Ai - A 1 ) < 0 for 

j = 2, 3, ... , n, then exp [ (ri- r)t] and 
exp [- ( A. - A. }t] are very small fort> 0 and 

] ' 
approach zero with increasing t. Therefore, the 
principle values of the integrals of the first set 
are xJt) = C 111 1 e' 1 t and of the second set are 

xJt) = C 111 1e-A lt, i.e., the integral curves of 

both systems almost coincide, but motion of the 

particle ( x 1 , x2 • •.• , Xn) along these curves 

proceeds with different velocity. In the first case 

we have approximately x( = C 171 1r 1e' 1 t , and in 

the second case x; =- C 171 1 A1e-Alt. 

3. APPLICATION OF THE GENERAL THEORY 
TO SPECIFIC PROBLEMS 

The Transfer of Heat from One System to Another 

We now show that the Fourier hypothesis, which: 
applies to the transfer of heat from one system to 
another, follows from our general theory of ir­
reversible thermodynamic processes. 

We consider a system consisting of two plates, 
i.e., two thin plane round disks, in thermal con­
tact through their bases, and adiabatically isolated 
from their surroundings. In this case we shall 
neglect any work of thermal expansion. We denote 
by m 1 the mass per unit area of contact, T 1 the 

absolute temperature, c , the specific heat, all of 
1 

the first plate; m 2 , T 2 , c 2 are the corresponding 
quantities for the second plate, T 0 is the overall 
temperature of the system after thermal equilibrium 
has been established. We have assumed that 
these plates were not thick, in order that it would 
be possible to consider the temperature at any 
moment to be uniform at all points on either of the 
two plates. 

Let Q 1 he the amount of heat per unit area of 

contact that the first plate must receive from the 
second in order that the system come to thermal 
equilibrium ( T 1 = T 0 ), and let Q 2 be the cor­

responding amount of heat which the second plate 
must receive from the first. 

Here 

(3.1) 

(3.2} 

Consequently, 

Thus at a given moment t, we get for the 
entropy !1S per unit area of thermal contact 
(keeping only terms of second order), 

Here 

(3.5) 

iJ (--AS) 2 m1c1 + m2c2 Q -· aQ (3.6) 
--iJ~ = T~ m1c1 m2c2 1 - I> 

where a 2':, 0. 

We then have only the one equation 

(3.7) 

the integral of which is Q1 = Ce't. 
Substituting this value of Q 1 in Eq. (3. 7), and 

recalling that a 2':, 0, we get 

r 2 = a, r1.2 = + Va. 
Here only - .y-;;- is of importance in physical 
problems, since lim Q 1 = 0 for t = <Foo. Conse­

quently, 

QI = ce-Viit • 

Q11 =- Vace-Vat =- VaQ!J 
(3.8) 

where C = Q ~ is the value of Q 1 at the initial time 
t = 0. Recalling the value of Q 1 from Eq. (3.4) and 

the value of a, we get the Fourier formula for the 

"heat flow" (! 1' : 

Up to this point we have assumed that at each 
moment the temperature of each of the two plates 
is uniform. But even for very small thickness the 
temperature of each plate, which is a continuous 
function of position along the axis, must have dif­
ferent values on the opposite faces of each plate, 
hence different values are obtained for the entropy 
when one or the other temperature value is inserted 
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in Eq. (3.5). However, this difference is very small, 
since the temperature difference between the faces 
of the disks is slight. The entropy of each plate 

will correspond to a mean temperature which 
depends on the thermal conductivity of the plate. 
Denoting by T 1 and T 2 the extreme temperature for 

each plate at a given moment and by T 0 the temper­
ature at thermal equilibrium, we get 

fl ere we must assume for the average temperature at 

time tin each of the two plates 

where A 1 and A 2 depend on the thermal conduc­

tivity of the plates and differ very slightly from 
unity. We then have 

(3.10) 

QI = mlcl)'ltl.Tl'Q2 = m2c2A.2tl.T2,Qt + Q2 = 0, 

which gives 

Q1 = m1c1J..1m2c2J..2 ( T1 _ T2), (3.11 ) 
m1c1J..1 + m2cif-2 

_iL = l,ttl.Tt, ~ =-Q1 = A.~tl.T2 • 
m1c1 m2c2 m2c2 ~ 

(3.12) 

Limiting ourselves to terms of second order, we 
get 

tl.S = J..2!:::..T2- J..1flT1 Ql = _ m1c1 + m2c2 Q~ 
T2 m1c1m2c2 T2 ' 

0 0 

d (- !:::..S) = 2 (m1c1 + m2c2) _2.!_ = aQ 
dQ1 m1c1m2c2 T2 I· 

0 

Following the method of calculation given above, 
we get, finally, 

HEAT PROPAGATION IN A HOMOGENEOUS ROD 

We now consider heat propagation in a cylindrical 
rod with density p and specific heat c. The lateral 
surfaces of the rod are covered with a thermally 
insulating jacket. We assume that the tempera-
ture of the rod is a continuous function which has 

derivatives along the axis of the rod, taken as the 
abscissa. We take three cross-sections of the 
rod, corresponding to X - d X• x, and X + d X• and 
designate the area of each of these cross sections 
by f. In this way we obtain two adjacent cells of 

volume f dx and mass p f d X· 
We now turn our attention to the system which 

consists of these two cells. We denote by 

Q (X- d X) the heat flow per unit area into the 
system from the side at X - d X and by Q ( X 
+ d X) the flow of heat entering from the side at 
x+dx. 

Let dS be the increase in entropy per unit mass 
of the system of the two cells in the time interval 
dt. The entropy increase of the system per unit 
. ll dS time wi then be 2pfd X --. We denote by du 

dt 
the increase of internal energy of the system per 
unit mass in the time interval dt. The internal 
energy increase per unit time will then be 

2pfdx ~~ =f[Q(x-dx)-Q(x+dx)] 

= -2+dx dQ 
1' d.x . 

Thus, neglecting the work of thermal expansion, 
we have 

T dS __ dQ 
p dt - d.x 

or 

dS _ 1 dQ d (Q IT) 
P(lt- --y d.x =- d.x 

(3.13) 

Q dT (.x) 
----p(JX 

On the other hand, 
(3.14) 

dT (.x) 
T (x + dx)- T (x- dx) = 2-----;[Xdx. 

But this quantity is, from Eq. (3.4), proportional 

to the quantity of heat Q in an adiabatic process. 
Setting 

dT I dx = p.Q, (3.15) 

where p. is a proportionality constant, we get from 
Eq. (3.13) 

dS = _ d (Q IT) _ _.!:_QQ. 
p dt d.x ]2 • 

(3.16) 

The increase of entropy can be divided into two 
parts (superposition principle): the first, the 
divergence of the entropy 
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and second, the quantity 

• (L • 
/1cr = - T2 QQ 

or entropy flow which, by Eq. (3.5), corresponds to 
the entropy 

/1cr = - __!__...!:.. Q2 
2 p ' (3.17} 

which appears in the irreversible adiabatic process 
considered in the previous section. As a con­
sequence we can write 

b>O, (3.18) 

which leads to the relation 

Q =-VbQ =- lft I bdT jdx, (3.19) 

which appears in the formula for heat flow in 
Fourier's theory. 

Similar results obtained hy Prigogine with the 
help of direct application of the phenomenological 
relations of Onsager are reproduced in de Groot's 
work 5. In this case the coefficients L 'k as we 

' ' 
have shown, must satisfy cettain conditions in 
order that lim Q = 0 for t = + oo. 

APPLICATION TO THE THEORY OF PHASES 

Let a liquid (I) and its vapor (II) at temperatures 
T 1 and T 2 be contained in a given closed reservoir 

with heat proof walls. Let M, V, U be, respectively, 
the total mass, volume and energy of this system, 
Mi (i = 1, 2) the masses of the components, pi 

the pressure and !Yi' ui, si the volume, energy and 
entropy per u111it mass, so that 

M 1u1 + M 2u2 = U, 

S = M 1s1 + M 2s2 • 

(3.20) 

Taking the mass M I• the energy u I and the volume 
vI as the independent variables that define the 

state of the components, we find that Eqs. (3.20) 
define M 2 • v 2 , u 2 as functions of M I' vi' ui. In­

asmuch as si' Ti appear as functions of ui• vi' they 

are also functions of M I• vi' ui. Therefore the 

total entropy S of the system is also a function of 
these three variables. 

Denoting hy M~, v~, u ~ the values of the variables 

M V <U for the equilibrium state, we have, lim-
I' I' I 

iting ourselves to tenns of the first and second 
order, 

where 

( as ) ( as ) (as ) =-v -n -m 
dVJ. o + au1 o + aM1 o 

2 ( a2s ) -f- ( a2s) 2 + a-rhaM1 o vm au~ 0 u 

( a2s ) ( a2s ) ] + 2 auldMl um + aM2 m2 ' 
1 

o_u u1-ul- • 

Since the derivatives are taken at v~. u~. M'l' 
which correspond to the maximum of the entropy S, 

(..?.§...) - (..?.§...) =(E-) = 0 (3.21) 
aul o- avl o aMI o 

and, consequently, 

( a~s ) 2 ( o2S ) ( a2s ) ] + -a .2 u + 2 au dM um + --2 m2 . u1 0 1 1 o aM1 0 

To calculate the second derivatives of S, we make 
use of the formula for the second total differential: 

a2S tPS o2S 
d2S = ·av2 dv2 + 2 a'Dau dvdu + 2 avam dvdm 

a2S 2 aas a2S 2 + au2 du + 2 auam dudm + iJm2 dm . 

The differential equations ot the process under 
consideration have the fonn 
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(3.22) 

tPv = _ ( a2s ) 
dt2 av2 

1 0 
v- ( a!:ffu1 ) 0 u- (av~:~1 )om, 

tPm ( a2s ) ( a2s ) ( a2s ) 
dt2 =- dMtdVt o V- iJM1du1 o U- aM~ om. 

The interesting integrals of this system depend 
on the negative root of the algebraic equation 

as ( 1 1 ) 
du =Mt -T ---r = 0, 

1 \ 1 12 
(3.26) 

aS _ [ _ _ (u1- u2) + P2 (Vt- V2)] _ 0 
iJMt - S1 S2 T2 -

lead to Gibb's conditions 

P1 = P2 =Po· (3.27) 

Choosing M 1 , v 1 , u 1 as independent variables, 
we have 

( a2s ) 2 ( a2s ) 
- , a~ o - r - , av1au1 o 

( a•s ) 
- \ OUtOVt 0 

( iJ2S ) 
- dvtiJM1 o 

T1 = /1 (uhvt)· T2 = /2 (uz, V2) = f(up vh Mt), 

= 0. s1 = -f1 (ut, Vt), s2 = -f2 (u2• v2) = ~ (ul' vl' Mt), 

Pt = t?t (ul' vi), P2 = t?2 (~. v2) = cp (ul' v1, M1)· 

Since (- ~S) is a positive definite quadratic 
form, three of the roots of this equation are nega­
tive and the other three are positive. The results 
which are obtained are of physical interest only if 
both masses are positive for the case of thermal 
equilibrium. 

To determine the values of the independent vari­
ables which apply to the case of stable equilibrium, 
we follow the Gibbs method as it is stated in the 
thermodynamics text of Planck 9 • 

From Eq. (3 .20) we get 

(3.24) 

M2dv2 = -M1dv1- (v1- v2)dMl' 

M2du2 = - M1du1- (u1 - U2) dM1 

dS = M1ds1 + M2ds2 + s1dM1 + s2dM2 (3.25) 

= M du1 + P1dv1 + M du2 + P2dv2 + ( _ ) dM 
1 Tt 2 T2 St s2 1 

Thus Eqs. (3.4), which determine the state of 
thermodynamic equilibrium, and which in our case, 
have the form 

9M. Planck, Thermodynamics, 1930 

Substituting these values of T 1 , T 2 , s 1 , s 2 , p 1 , 

p 2 in Eqs. (3.26), we get from them vy, uy, M ~· 
which define the state of thermodynamic equilibrium. 
We note here that Eqs. (3.26) contain s and u in 
the form s 1 - s 2 and u 1 - u 2 . 

Following Planck, we can give another form to 
the last of Eqs. (3.26). Since the difference ( s 1 
- s 2 ) depends, in thermodynamic equilibrium, only 
on state I and state II and not on the path from I to 
II, we can find this difference in the transition from 
I to II along the isotherm T But since s and s o· ' 1 2 
pertain to a unit mass of one and the same material 
at the temperature T 0 , we have 

(1) 

S 1 -S2 = ~ ds 
(2) 

1 (1) (1) 

= To ~ (du + pdv) = Ut To u2 + ;o ~ pdv. 
(2) (2) 

Now, assuming T 2 :: 1'0 , we find, from Eq. 
(3.26) 

(1) 

- pdv- =0, 1 ~ P2 ( Vt - V2) 
T0 To 

(2) 

(1) 

~ pdv = P2 (v1 -v2)· 
(2) 

It now remains to find, with the help of d2S, the 
second derivatives which enter into Eq. (3.22) and 
which pertain to the equilibrium state, introducing 
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only such quantities which can be obtained by lab­
oratory measurement. 

Recalling Eqs. (3.26) we get, from (3.25), 

(3.28) 

+ ~; (dp1 - dp2) dv1 

+ [ ds1 __ ds2 _ du1- du2 + ~: (dv1 - dv2) 

_ (v1 -v2)dp2 + (u1-U2) +Po (V1-V2) dT J dM 
T. ~ 2 1 

0 lij 

= ~ {- dT1 + dT2 ) du1 
0 

The quantities u 1 , v1, u 2 , v 2 and M 1 , which ap­
pear here, relate to the equilibrium state. The dif­
ferentials dT, dT 2 , du 2 , dv 2 , dp, dp 2must be taken 
as functions1of du 1• dv 1 and dM1

1 = dm. For this 
purpose we first use 

But, inasmuch as we chose M 1• u 1• v 1 as the in­
dependent variables, then T = T(u, v); conversely, 

u = u ( v, T) as a function of v and T satisfy the 
identity relation 

T-:= T [u (v, T), v]. 

From this identity we get, by differentiating with 
respect to T, 

aT(u, v) au (1J~ = 1, 
au dT 

fJT(u, v) 1 1 
:au = du (v, T)/iJT = c;' 

and by differentiating with respect to v, 

aT(u, v) 
av 

a T(u, v) au (v, T) _ 1 au (v, T) 
au av - -c; av 

From the first law of thermodynamics 

dq = du(v, T) + p(v, T) dv = du(~T T) dT 

[ au (v, 7) J + -~- + p (v, T) dv = cvdT + adv, 

so that 

ou(v, T)jov=a-p, 

and therefore 

ar(u, v) = __ 1 (a_ p). 
i:Jv Cv 

We finally obtain 

dT = aT(u, v) d 
du u 

+ aT(u, v) dv=- a-p dv +-1 du. 
dv cv Cv 

Consequently, 

a1- Pod 1 d dT1 = ----- V1 +- Utt 
C·v1 Cvt 

We now express dp as a function of du, dv. 
We have 

d ( ) ap(u,11)d +ap(u.v)d 
p u, v = au u ----;n;- v. 

From the First Law we get 

dq = du(p, T) + pdv(p, T) 

'=[au(p, T)+p av(.E..;_fl]d 
ap ap P 

+ [au < P • n + r a v < P· n J d r = kd d r ar ar .p+cp · 
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On the other hand, assuming u, v in the expres­
sion for p as functions of p and t, we get the 
identity 

p=p(u, v)=p[u(p, T), v(p, T)], 

and differentiating with respect to p and T, we 
find 

iJp (n, v) au (p, T) . iJp (u, v) iJv (p, T) _ 1 
au op + dv ap - ' 

iJp (u, v) iJu (p, T) + iJp (u, v) iJv (p, T) = 0 
du iJT dv aT . 

Recalling the expressions for k and c P intro­
duced above and assuming 

!:l = k ov(p, T) 
iJT 

we obtain 

iJv (p, T) 
Cp ap ' 

!:l iJp (u, v) ___ iJu (p, T) _ _ --1- iJv (p, T) 
ov - dT - Cp ' p dT • 

!:l iJp (u, ·v) 
du 

and, consequently, 

iJv (p, T) 
aT 

dp iJp (u, v) d iJp (u, v) d 
du u + ov ·v 

iJv (p, T) I iJT d cp- p (iJv (p, T')liJT] 
~ u- ~ dv. 

We then have 

d --liJv(p, T)!iJT] d P1 -- ~ 1 U1 

dp ___ M1 [ iJv (p, T) I iJT] d 
2- M2 ~ 2 ul 

1 [[u~-u -l..p (v -v)](iJv(p, T)) 
- ~2M2 2 ' o 1 2 \, dT 2 

where the expressions in square brackets pertain to 
phase I and II in thermodynamic equilibrium. 

From dq = du + pdv we get the following ex­
pression for the quantity of heat necessary to 

vaporize a unit mass at the temperature T 0 and 
pressure p o· 

Making use of this expression and those for dT 
and dp obtained earlier, we get from (3.28), after 
some simplification 

d2S = Adu12 + 2Bdu dv 
1 1-

+ 2Cdu1dm + Ddv~ + 2Edv1dm + Pdm2, 

where the coefficients A; B, . . . , Fare 
identical with the second derivatives which enter 
into the set of equations (3.20). 

In this fashion we get the system of differential 
equations 

d 2mjdt2 =- Cu-Ev-Pm, 

d2u / dt2 = -Au-Bv- Cm, 

d 2v fdt 2 = -Bu-Dv- Em, 

(3.22' 

which describe the time development of the process. 
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